utils_multiple_choice.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Julien Chaumond's avatar
Julien Chaumond committed
16
""" Multiple choice fine-tuning: utilities to work with multiple choice tasks of reading comprehension """
17
18


Aymeric Augustin's avatar
Aymeric Augustin committed
19
20
21
import csv
import glob
import json
22
23
import logging
import os
Julien Chaumond's avatar
Julien Chaumond committed
24
25
26
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional
Aymeric Augustin's avatar
Aymeric Augustin committed
27
28
29

import tqdm

30
from filelock import FileLock
31
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
32
33
34
35
36


logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
@dataclass(frozen=True)
class InputExample:
    """
    A single training/test example for multiple choice

    Args:
        example_id: Unique id for the example.
        question: string. The untokenized text of the second sequence (question).
        contexts: list of str. The untokenized text of the first sequence (context of corresponding question).
        endings: list of str. multiple choice's options. Its length must be equal to contexts' length.
        label: (Optional) string. The label of the example. This should be
        specified for train and dev examples, but not for test examples.
    """

    example_id: str
    question: str
    contexts: List[str]
    endings: List[str]
    label: Optional[str]


@dataclass(frozen=True)
class InputFeatures:
    """
    A single set of features of data.
    Property names are the same names as the corresponding inputs to a model.
    """

    example_id: str
    input_ids: List[List[int]]
    attention_mask: Optional[List[List[int]]]
    token_type_ids: Optional[List[List[int]]]
    label: Optional[int]


class Split(Enum):
    train = "train"
    dev = "dev"
    test = "test"


78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
if is_torch_available():
    import torch
    from torch.utils.data.dataset import Dataset

    class MultipleChoiceDataset(Dataset):
        """
        This will be superseded by a framework-agnostic approach
        soon.
        """

        features: List[InputFeatures]

        def __init__(
            self,
            data_dir: str,
            tokenizer: PreTrainedTokenizer,
            task: str,
            max_seq_length: Optional[int] = None,
            overwrite_cache=False,
            mode: Split = Split.train,
        ):
            processor = processors[task]()

            cached_features_file = os.path.join(
102
                data_dir, f"cached_{mode.value}_{tokenizer.__class__.__name__}_{max_seq_length}_{task}"
103
            )
104
105
106
107
108

            # Make sure only the first process in distributed training processes the dataset,
            # and the others will use the cache.
            lock_path = cached_features_file + ".lock"
            with FileLock(lock_path):
Julien Chaumond's avatar
Julien Chaumond committed
109

110
111
112
                if os.path.exists(cached_features_file) and not overwrite_cache:
                    logger.info(f"Loading features from cached file {cached_features_file}")
                    self.features = torch.load(cached_features_file)
Julien Chaumond's avatar
Julien Chaumond committed
113
                else:
114
115
116
117
118
119
120
121
                    logger.info(f"Creating features from dataset file at {data_dir}")
                    label_list = processor.get_labels()
                    if mode == Split.dev:
                        examples = processor.get_dev_examples(data_dir)
                    elif mode == Split.test:
                        examples = processor.get_test_examples(data_dir)
                    else:
                        examples = processor.get_train_examples(data_dir)
122
                    logger.info(f"Training examples: {len(examples)}")
Lysandre's avatar
Lysandre committed
123
124
125
126
127
128
                    self.features = convert_examples_to_features(
                        examples,
                        label_list,
                        max_seq_length,
                        tokenizer,
                    )
129
                    logger.info(f"Saving features into cached file {cached_features_file}")
130
                    torch.save(self.features, cached_features_file)
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

        def __len__(self):
            return len(self.features)

        def __getitem__(self, i) -> InputFeatures:
            return self.features[i]


if is_tf_available():
    import tensorflow as tf

    class TFMultipleChoiceDataset:
        """
        This will be superseded by a framework-agnostic approach
        soon.
        """

        features: List[InputFeatures]

        def __init__(
            self,
            data_dir: str,
            tokenizer: PreTrainedTokenizer,
            task: str,
            max_seq_length: Optional[int] = 128,
            overwrite_cache=False,
            mode: Split = Split.train,
        ):
            processor = processors[task]()

            logger.info(f"Creating features from dataset file at {data_dir}")
            label_list = processor.get_labels()
            if mode == Split.dev:
                examples = processor.get_dev_examples(data_dir)
            elif mode == Split.test:
                examples = processor.get_test_examples(data_dir)
            else:
                examples = processor.get_train_examples(data_dir)
169
            logger.info(f"Training examples: {len(examples)}")
170

Lysandre's avatar
Lysandre committed
171
172
173
174
175
176
            self.features = convert_examples_to_features(
                examples,
                label_list,
                max_seq_length,
                tokenizer,
            )
177
178
179
180

            def gen():
                for (ex_index, ex) in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"):
                    if ex_index % 10000 == 0:
181
                        logger.info(f"Writing example {ex_index} of {len(examples)}")
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

                    yield (
                        {
                            "example_id": 0,
                            "input_ids": ex.input_ids,
                            "attention_mask": ex.attention_mask,
                            "token_type_ids": ex.token_type_ids,
                        },
                        ex.label,
                    )

            self.dataset = tf.data.Dataset.from_generator(
                gen,
                (
                    {
                        "example_id": tf.int32,
                        "input_ids": tf.int32,
                        "attention_mask": tf.int32,
                        "token_type_ids": tf.int32,
                    },
                    tf.int64,
                ),
                (
                    {
                        "example_id": tf.TensorShape([]),
                        "input_ids": tf.TensorShape([None, None]),
                        "attention_mask": tf.TensorShape([None, None]),
                        "token_type_ids": tf.TensorShape([None, None]),
                    },
                    tf.TensorShape([]),
                ),
            )

        def get_dataset(self):
Julien Plu's avatar
Julien Plu committed
216
217
            self.dataset = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features)))

218
            return self.dataset
219

220
221
        def __len__(self):
            return len(self.features)
Julien Chaumond's avatar
Julien Chaumond committed
222

223
224
        def __getitem__(self, i) -> InputFeatures:
            return self.features[i]
Julien Chaumond's avatar
Julien Chaumond committed
225
226
227


class DataProcessor:
erenup's avatar
erenup committed
228
    """Base class for data converters for multiple choice data sets."""
229
230
231
232
233
234
235
236
237

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

erenup's avatar
erenup committed
238
    def get_test_examples(self, data_dir):
erenup's avatar
erenup committed
239
        """Gets a collection of `InputExample`s for the test set."""
erenup's avatar
erenup committed
240
241
        raise NotImplementedError()

242
243
244
245
246
247
    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()


class RaceProcessor(DataProcessor):
erenup's avatar
erenup committed
248
    """Processor for the RACE data set."""
249
250
251

    def get_train_examples(self, data_dir):
        """See base class."""
252
        logger.info(f"LOOKING AT {data_dir} train")
253
254
        high = os.path.join(data_dir, "train/high")
        middle = os.path.join(data_dir, "train/middle")
255
256
        high = self._read_txt(high)
        middle = self._read_txt(middle)
257
        return self._create_examples(high + middle, "train")
258
259
260

    def get_dev_examples(self, data_dir):
        """See base class."""
261
        logger.info(f"LOOKING AT {data_dir} dev")
262
263
        high = os.path.join(data_dir, "dev/high")
        middle = os.path.join(data_dir, "dev/middle")
264
265
        high = self._read_txt(high)
        middle = self._read_txt(middle)
266
        return self._create_examples(high + middle, "dev")
267

erenup's avatar
erenup committed
268
269
    def get_test_examples(self, data_dir):
        """See base class."""
270
        logger.info(f"LOOKING AT {data_dir} test")
271
272
        high = os.path.join(data_dir, "test/high")
        middle = os.path.join(data_dir, "test/middle")
erenup's avatar
erenup committed
273
274
        high = self._read_txt(high)
        middle = self._read_txt(middle)
275
        return self._create_examples(high + middle, "test")
erenup's avatar
erenup committed
276

277
278
279
280
281
282
283
284
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_txt(self, input_dir):
        lines = []
        files = glob.glob(input_dir + "/*txt")
        for file in tqdm.tqdm(files, desc="read files"):
285
            with open(file, "r", encoding="utf-8") as fin:
286
287
288
289
290
291
292
293
294
                data_raw = json.load(fin)
                data_raw["race_id"] = file
                lines.append(data_raw)
        return lines

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (_, data_raw) in enumerate(lines):
295
            race_id = f"{set_type}-{data_raw['race_id']}"
296
297
            article = data_raw["article"]
            for i in range(len(data_raw["answers"])):
298
299
300
                truth = str(ord(data_raw["answers"][i]) - ord("A"))
                question = data_raw["questions"][i]
                options = data_raw["options"][i]
301
302
303
304
305

                examples.append(
                    InputExample(
                        example_id=race_id,
                        question=question,
306
                        contexts=[article, article, article, article],  # this is not efficient but convenient
307
                        endings=[options[0], options[1], options[2], options[3]],
308
309
310
                        label=truth,
                    )
                )
311
312
        return examples

313

314
315
316
317
318
class SynonymProcessor(DataProcessor):
    """Processor for the Synonym data set."""

    def get_train_examples(self, data_dir):
        """See base class."""
319
        logger.info(f"LOOKING AT {data_dir} train")
320
321
322
323
        return self._create_examples(self._read_csv(os.path.join(data_dir, "mctrain.csv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
324
        logger.info(f"LOOKING AT {data_dir} dev")
325
326
327
328
        return self._create_examples(self._read_csv(os.path.join(data_dir, "mchp.csv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
329
        logger.info(f"LOOKING AT {data_dir} dev")
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

        return self._create_examples(self._read_csv(os.path.join(data_dir, "mctest.csv")), "test")

    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3", "4"]

    def _read_csv(self, input_file):
        with open(input_file, "r", encoding="utf-8") as f:
            return list(csv.reader(f))

    def _create_examples(self, lines: List[List[str]], type: str):
        """Creates examples for the training and dev sets."""

        examples = [
            InputExample(
                example_id=line[0],
                question="",  # in the swag dataset, the
                # common beginning of each
                # choice is stored in "sent2".
                contexts=[line[1], line[1], line[1], line[1], line[1]],
                endings=[line[2], line[3], line[4], line[5], line[6]],
                label=line[7],
            )
            for line in lines  # we skip the line with the column names
        ]

        return examples


360
class SwagProcessor(DataProcessor):
erenup's avatar
erenup committed
361
    """Processor for the SWAG data set."""
362
363
364

    def get_train_examples(self, data_dir):
        """See base class."""
365
        logger.info(f"LOOKING AT {data_dir} train")
366
367
368
369
        return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
370
        logger.info(f"LOOKING AT {data_dir} dev")
371
372
        return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev")

erenup's avatar
erenup committed
373
374
    def get_test_examples(self, data_dir):
        """See base class."""
375
        logger.info(f"LOOKING AT {data_dir} dev")
erenup's avatar
erenup committed
376
377
378
379
        raise ValueError(
            "For swag testing, the input file does not contain a label column. It can not be tested in current code"
            "setting!"
        )
erenup's avatar
erenup committed
380
        return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test")
381

382
383
384
385
386
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_csv(self, input_file):
387
        with open(input_file, "r", encoding="utf-8") as f:
388
            return list(csv.reader(f))
389

390
    def _create_examples(self, lines: List[List[str]], type: str):
391
        """Creates examples for the training and dev sets."""
392
393
        if type == "train" and lines[0][-1] != "label":
            raise ValueError("For training, the input file must contain a label column.")
394
395
396
397
398
399
400

        examples = [
            InputExample(
                example_id=line[2],
                question=line[5],  # in the swag dataset, the
                # common beginning of each
                # choice is stored in "sent2".
401
402
403
404
405
                contexts=[line[4], line[4], line[4], line[4]],
                endings=[line[7], line[8], line[9], line[10]],
                label=line[11],
            )
            for line in lines[1:]  # we skip the line with the column names
406
407
408
409
410
411
        ]

        return examples


class ArcProcessor(DataProcessor):
erenup's avatar
erenup committed
412
    """Processor for the ARC data set (request from allennlp)."""
413
414
415

    def get_train_examples(self, data_dir):
        """See base class."""
416
        logger.info(f"LOOKING AT {data_dir} train")
417
418
419
420
        return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
421
        logger.info(f"LOOKING AT {data_dir} dev")
422
423
        return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev")

erenup's avatar
erenup committed
424
    def get_test_examples(self, data_dir):
425
        logger.info(f"LOOKING AT {data_dir} test")
erenup's avatar
erenup committed
426
427
        return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test")

428
429
430
431
432
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_json(self, input_file):
433
        with open(input_file, "r", encoding="utf-8") as fin:
434
435
436
437
438
439
            lines = fin.readlines()
            return lines

    def _create_examples(self, lines, type):
        """Creates examples for the training and dev sets."""

440
        # There are two types of labels. They should be normalized
441
442
443
444
445
446
        def normalize(truth):
            if truth in "ABCD":
                return ord(truth) - ord("A")
            elif truth in "1234":
                return int(truth) - 1
            else:
447
                logger.info(f"truth ERROR! {truth}")
erenup's avatar
erenup committed
448
                return None
erenup's avatar
erenup committed
449

450
451
452
453
454
        examples = []
        three_choice = 0
        four_choice = 0
        five_choice = 0
        other_choices = 0
erenup's avatar
erenup committed
455
        # we deleted example which has more than or less than four choices
456
457
458
459
460
461
462
463
464
465
466
467
468
        for line in tqdm.tqdm(lines, desc="read arc data"):
            data_raw = json.loads(line.strip("\n"))
            if len(data_raw["question"]["choices"]) == 3:
                three_choice += 1
                continue
            elif len(data_raw["question"]["choices"]) == 5:
                five_choice += 1
                continue
            elif len(data_raw["question"]["choices"]) != 4:
                other_choices += 1
                continue
            four_choice += 1
            truth = str(normalize(data_raw["answerKey"]))
erenup's avatar
erenup committed
469
            assert truth != "None"
470
471
472
473
474
475
476
            question_choices = data_raw["question"]
            question = question_choices["stem"]
            id = data_raw["id"]
            options = question_choices["choices"]
            if len(options) == 4:
                examples.append(
                    InputExample(
477
                        example_id=id,
478
                        question=question,
479
480
481
482
483
484
                        contexts=[
                            options[0]["para"].replace("_", ""),
                            options[1]["para"].replace("_", ""),
                            options[2]["para"].replace("_", ""),
                            options[3]["para"].replace("_", ""),
                        ],
485
                        endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]],
486
487
488
                        label=truth,
                    )
                )
489
490
491
492

        if type == "train":
            assert len(examples) > 1
            assert examples[0].label is not None
493
494
495
496
497
        logger.info(f"len examples: {len(examples)}")
        logger.info(f"Three choices: {three_choice}")
        logger.info(f"Five choices: {five_choice}")
        logger.info(f"Other choices: {other_choices}")
        logger.info(f"four choices: {four_choice}")
498
499
500
501

        return examples


502
def convert_examples_to_features(
Lysandre's avatar
Lysandre committed
503
504
505
506
    examples: List[InputExample],
    label_list: List[str],
    max_length: int,
    tokenizer: PreTrainedTokenizer,
507
508
509
) -> List[InputFeatures]:
    """
    Loads a data file into a list of `InputFeatures`
510
511
    """

512
    label_map = {label: i for i, label in enumerate(label_list)}
513
514
515
516

    features = []
    for (ex_index, example) in tqdm.tqdm(enumerate(examples), desc="convert examples to features"):
        if ex_index % 10000 == 0:
517
            logger.info(f"Writing example {ex_index} of {len(examples)}")
Julien Chaumond's avatar
Julien Chaumond committed
518
        choices_inputs = []
519
        for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)):
520
            text_a = context
521
            if example.question.find("_") != -1:
522
523
                # this is for cloze question
                text_b = example.question.replace("_", ending)
524
            else:
525
526
                text_b = example.question + " " + ending

527
            inputs = tokenizer(
528
529
530
531
                text_a,
                text_b,
                add_special_tokens=True,
                max_length=max_length,
532
533
                padding="max_length",
                truncation=True,
534
                return_overflowing_tokens=True,
535
            )
536
537
538
539
540
541
            if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0:
                logger.info(
                    "Attention! you are cropping tokens (swag task is ok). "
                    "If you are training ARC and RACE and you are poping question + options,"
                    "you need to try to use a bigger max seq length!"
                )
542

Julien Chaumond's avatar
Julien Chaumond committed
543
            choices_inputs.append(inputs)
544

Julien Chaumond's avatar
Julien Chaumond committed
545
        label = label_map[example.label]
546

Julien Chaumond's avatar
Julien Chaumond committed
547
548
549
550
551
552
553
        input_ids = [x["input_ids"] for x in choices_inputs]
        attention_mask = (
            [x["attention_mask"] for x in choices_inputs] if "attention_mask" in choices_inputs[0] else None
        )
        token_type_ids = (
            [x["token_type_ids"] for x in choices_inputs] if "token_type_ids" in choices_inputs[0] else None
        )
554

Julien Chaumond's avatar
Julien Chaumond committed
555
556
557
558
559
560
561
562
563
        features.append(
            InputFeatures(
                example_id=example.example_id,
                input_ids=input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                label=label,
            )
        )
564

Julien Chaumond's avatar
Julien Chaumond committed
565
566
    for f in features[:2]:
        logger.info("*** Example ***")
567
        logger.info("feature: {f}")
568
569
570
571

    return features


572
573
processors = {"race": RaceProcessor, "swag": SwagProcessor, "arc": ArcProcessor, "syn": SynonymProcessor}
MULTIPLE_CHOICE_TASKS_NUM_LABELS = {"race", 4, "swag", 4, "arc", 4, "syn", 5}