utils_multiple_choice.py 20.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Julien Chaumond's avatar
Julien Chaumond committed
16
""" Multiple choice fine-tuning: utilities to work with multiple choice tasks of reading comprehension """
17
18


Aymeric Augustin's avatar
Aymeric Augustin committed
19
20
21
import csv
import glob
import json
22
23
import logging
import os
Julien Chaumond's avatar
Julien Chaumond committed
24
25
26
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional
Aymeric Augustin's avatar
Aymeric Augustin committed
27
28
29

import tqdm

30
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
31
32
33
34
35


logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
@dataclass(frozen=True)
class InputExample:
    """
    A single training/test example for multiple choice

    Args:
        example_id: Unique id for the example.
        question: string. The untokenized text of the second sequence (question).
        contexts: list of str. The untokenized text of the first sequence (context of corresponding question).
        endings: list of str. multiple choice's options. Its length must be equal to contexts' length.
        label: (Optional) string. The label of the example. This should be
        specified for train and dev examples, but not for test examples.
    """

    example_id: str
    question: str
    contexts: List[str]
    endings: List[str]
    label: Optional[str]


@dataclass(frozen=True)
class InputFeatures:
    """
    A single set of features of data.
    Property names are the same names as the corresponding inputs to a model.
    """

    example_id: str
    input_ids: List[List[int]]
    attention_mask: Optional[List[List[int]]]
    token_type_ids: Optional[List[List[int]]]
    label: Optional[int]


class Split(Enum):
    train = "train"
    dev = "dev"
    test = "test"


77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
if is_torch_available():
    import torch
    from torch.utils.data.dataset import Dataset
    from transformers import torch_distributed_zero_first

    class MultipleChoiceDataset(Dataset):
        """
        This will be superseded by a framework-agnostic approach
        soon.
        """

        features: List[InputFeatures]

        def __init__(
            self,
            data_dir: str,
            tokenizer: PreTrainedTokenizer,
            task: str,
            max_seq_length: Optional[int] = None,
            overwrite_cache=False,
            mode: Split = Split.train,
            local_rank=-1,
        ):
            processor = processors[task]()

            cached_features_file = os.path.join(
                data_dir,
                "cached_{}_{}_{}_{}".format(mode.value, tokenizer.__class__.__name__, str(max_seq_length), task,),
            )
            with torch_distributed_zero_first(local_rank):
                # Make sure only the first process in distributed training processes the dataset,
                # and the others will use the cache.
Julien Chaumond's avatar
Julien Chaumond committed
109

110
111
112
                if os.path.exists(cached_features_file) and not overwrite_cache:
                    logger.info(f"Loading features from cached file {cached_features_file}")
                    self.features = torch.load(cached_features_file)
Julien Chaumond's avatar
Julien Chaumond committed
113
                else:
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
                    logger.info(f"Creating features from dataset file at {data_dir}")
                    label_list = processor.get_labels()
                    if mode == Split.dev:
                        examples = processor.get_dev_examples(data_dir)
                    elif mode == Split.test:
                        examples = processor.get_test_examples(data_dir)
                    else:
                        examples = processor.get_train_examples(data_dir)
                    logger.info("Training examples: %s", len(examples))
                    # TODO clean up all this to leverage built-in features of tokenizers
                    self.features = convert_examples_to_features(
                        examples,
                        label_list,
                        max_seq_length,
                        tokenizer,
                        pad_on_left=bool(tokenizer.padding_side == "left"),
                        pad_token=tokenizer.pad_token_id,
                        pad_token_segment_id=tokenizer.pad_token_type_id,
                    )
                    if local_rank in [-1, 0]:
                        logger.info("Saving features into cached file %s", cached_features_file)
                        torch.save(self.features, cached_features_file)

        def __len__(self):
            return len(self.features)

        def __getitem__(self, i) -> InputFeatures:
            return self.features[i]


if is_tf_available():
    import tensorflow as tf

    class TFMultipleChoiceDataset:
        """
        This will be superseded by a framework-agnostic approach
        soon.
        """

        features: List[InputFeatures]

        def __init__(
            self,
            data_dir: str,
            tokenizer: PreTrainedTokenizer,
            task: str,
            max_seq_length: Optional[int] = 128,
            overwrite_cache=False,
            mode: Split = Split.train,
        ):
            processor = processors[task]()

            logger.info(f"Creating features from dataset file at {data_dir}")
            label_list = processor.get_labels()
            if mode == Split.dev:
                examples = processor.get_dev_examples(data_dir)
            elif mode == Split.test:
                examples = processor.get_test_examples(data_dir)
            else:
                examples = processor.get_train_examples(data_dir)
            logger.info("Training examples: %s", len(examples))
            # TODO clean up all this to leverage built-in features of tokenizers
            self.features = convert_examples_to_features(
                examples,
                label_list,
                max_seq_length,
                tokenizer,
                pad_on_left=bool(tokenizer.padding_side == "left"),
                pad_token=tokenizer.pad_token_id,
                pad_token_segment_id=tokenizer.pad_token_type_id,
            )

            def gen():
                for (ex_index, ex) in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"):
                    if ex_index % 10000 == 0:
                        logger.info("Writing example %d of %d" % (ex_index, len(examples)))

                    yield (
                        {
                            "example_id": 0,
                            "input_ids": ex.input_ids,
                            "attention_mask": ex.attention_mask,
                            "token_type_ids": ex.token_type_ids,
                        },
                        ex.label,
                    )

            self.dataset = tf.data.Dataset.from_generator(
                gen,
                (
                    {
                        "example_id": tf.int32,
                        "input_ids": tf.int32,
                        "attention_mask": tf.int32,
                        "token_type_ids": tf.int32,
                    },
                    tf.int64,
                ),
                (
                    {
                        "example_id": tf.TensorShape([]),
                        "input_ids": tf.TensorShape([None, None]),
                        "attention_mask": tf.TensorShape([None, None]),
                        "token_type_ids": tf.TensorShape([None, None]),
                    },
                    tf.TensorShape([]),
                ),
            )

        def get_dataset(self):
            return self.dataset
225

226
227
        def __len__(self):
            return len(self.features)
Julien Chaumond's avatar
Julien Chaumond committed
228

229
230
        def __getitem__(self, i) -> InputFeatures:
            return self.features[i]
Julien Chaumond's avatar
Julien Chaumond committed
231
232
233


class DataProcessor:
erenup's avatar
erenup committed
234
    """Base class for data converters for multiple choice data sets."""
235
236
237
238
239
240
241
242
243

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

erenup's avatar
erenup committed
244
    def get_test_examples(self, data_dir):
erenup's avatar
erenup committed
245
        """Gets a collection of `InputExample`s for the test set."""
erenup's avatar
erenup committed
246
247
        raise NotImplementedError()

248
249
250
251
252
253
    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()


class RaceProcessor(DataProcessor):
erenup's avatar
erenup committed
254
    """Processor for the RACE data set."""
255
256
257
258

    def get_train_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} train".format(data_dir))
259
260
        high = os.path.join(data_dir, "train/high")
        middle = os.path.join(data_dir, "train/middle")
261
262
        high = self._read_txt(high)
        middle = self._read_txt(middle)
263
        return self._create_examples(high + middle, "train")
264
265
266
267

    def get_dev_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} dev".format(data_dir))
268
269
        high = os.path.join(data_dir, "dev/high")
        middle = os.path.join(data_dir, "dev/middle")
270
271
        high = self._read_txt(high)
        middle = self._read_txt(middle)
272
        return self._create_examples(high + middle, "dev")
273

erenup's avatar
erenup committed
274
275
276
    def get_test_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} test".format(data_dir))
277
278
        high = os.path.join(data_dir, "test/high")
        middle = os.path.join(data_dir, "test/middle")
erenup's avatar
erenup committed
279
280
        high = self._read_txt(high)
        middle = self._read_txt(middle)
281
        return self._create_examples(high + middle, "test")
erenup's avatar
erenup committed
282

283
284
285
286
287
288
289
290
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_txt(self, input_dir):
        lines = []
        files = glob.glob(input_dir + "/*txt")
        for file in tqdm.tqdm(files, desc="read files"):
291
            with open(file, "r", encoding="utf-8") as fin:
292
293
294
295
296
297
298
299
300
301
302
303
                data_raw = json.load(fin)
                data_raw["race_id"] = file
                lines.append(data_raw)
        return lines

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (_, data_raw) in enumerate(lines):
            race_id = "%s-%s" % (set_type, data_raw["race_id"])
            article = data_raw["article"]
            for i in range(len(data_raw["answers"])):
304
305
306
                truth = str(ord(data_raw["answers"][i]) - ord("A"))
                question = data_raw["questions"][i]
                options = data_raw["options"][i]
307
308
309
310
311

                examples.append(
                    InputExample(
                        example_id=race_id,
                        question=question,
312
                        contexts=[article, article, article, article],  # this is not efficient but convenient
313
                        endings=[options[0], options[1], options[2], options[3]],
314
315
316
                        label=truth,
                    )
                )
317
318
        return examples

319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
class SynonymProcessor(DataProcessor):
    """Processor for the Synonym data set."""

    def get_train_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} train".format(data_dir))
        return self._create_examples(self._read_csv(os.path.join(data_dir, "mctrain.csv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} dev".format(data_dir))
        return self._create_examples(self._read_csv(os.path.join(data_dir, "mchp.csv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} dev".format(data_dir))

        return self._create_examples(self._read_csv(os.path.join(data_dir, "mctest.csv")), "test")

    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3", "4"]

    def _read_csv(self, input_file):
        with open(input_file, "r", encoding="utf-8") as f:
            return list(csv.reader(f))

    def _create_examples(self, lines: List[List[str]], type: str):
        """Creates examples for the training and dev sets."""

        examples = [
            InputExample(
                example_id=line[0],
                question="",  # in the swag dataset, the
                # common beginning of each
                # choice is stored in "sent2".
                contexts=[line[1], line[1], line[1], line[1], line[1]],
                endings=[line[2], line[3], line[4], line[5], line[6]],
                label=line[7],
            )
            for line in lines  # we skip the line with the column names
        ]

        return examples


366
class SwagProcessor(DataProcessor):
erenup's avatar
erenup committed
367
    """Processor for the SWAG data set."""
368
369
370
371
372
373
374
375
376
377
378

    def get_train_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} train".format(data_dir))
        return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} dev".format(data_dir))
        return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev")

erenup's avatar
erenup committed
379
380
    def get_test_examples(self, data_dir):
        """See base class."""
erenup's avatar
erenup committed
381
382
383
384
385
        logger.info("LOOKING AT {} dev".format(data_dir))
        raise ValueError(
            "For swag testing, the input file does not contain a label column. It can not be tested in current code"
            "setting!"
        )
erenup's avatar
erenup committed
386
        return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test")
387

388
389
390
391
392
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_csv(self, input_file):
393
        with open(input_file, "r", encoding="utf-8") as f:
394
            return list(csv.reader(f))
395

396
    def _create_examples(self, lines: List[List[str]], type: str):
397
        """Creates examples for the training and dev sets."""
398
399
        if type == "train" and lines[0][-1] != "label":
            raise ValueError("For training, the input file must contain a label column.")
400
401
402
403
404
405
406

        examples = [
            InputExample(
                example_id=line[2],
                question=line[5],  # in the swag dataset, the
                # common beginning of each
                # choice is stored in "sent2".
407
408
409
410
411
                contexts=[line[4], line[4], line[4], line[4]],
                endings=[line[7], line[8], line[9], line[10]],
                label=line[11],
            )
            for line in lines[1:]  # we skip the line with the column names
412
413
414
415
416
417
        ]

        return examples


class ArcProcessor(DataProcessor):
erenup's avatar
erenup committed
418
    """Processor for the ARC data set (request from allennlp)."""
419
420
421
422
423
424
425
426
427
428
429

    def get_train_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} train".format(data_dir))
        return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} dev".format(data_dir))
        return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev")

erenup's avatar
erenup committed
430
431
432
433
    def get_test_examples(self, data_dir):
        logger.info("LOOKING AT {} test".format(data_dir))
        return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test")

434
435
436
437
438
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_json(self, input_file):
439
        with open(input_file, "r", encoding="utf-8") as fin:
440
441
442
443
444
445
            lines = fin.readlines()
            return lines

    def _create_examples(self, lines, type):
        """Creates examples for the training and dev sets."""

446
        # There are two types of labels. They should be normalized
447
448
449
450
451
452
        def normalize(truth):
            if truth in "ABCD":
                return ord(truth) - ord("A")
            elif truth in "1234":
                return int(truth) - 1
            else:
erenup's avatar
erenup committed
453
454
                logger.info("truth ERROR! %s", str(truth))
                return None
erenup's avatar
erenup committed
455

456
457
458
459
460
        examples = []
        three_choice = 0
        four_choice = 0
        five_choice = 0
        other_choices = 0
erenup's avatar
erenup committed
461
        # we deleted example which has more than or less than four choices
462
463
464
465
466
467
468
469
470
471
472
473
474
        for line in tqdm.tqdm(lines, desc="read arc data"):
            data_raw = json.loads(line.strip("\n"))
            if len(data_raw["question"]["choices"]) == 3:
                three_choice += 1
                continue
            elif len(data_raw["question"]["choices"]) == 5:
                five_choice += 1
                continue
            elif len(data_raw["question"]["choices"]) != 4:
                other_choices += 1
                continue
            four_choice += 1
            truth = str(normalize(data_raw["answerKey"]))
erenup's avatar
erenup committed
475
            assert truth != "None"
476
477
478
479
480
481
482
            question_choices = data_raw["question"]
            question = question_choices["stem"]
            id = data_raw["id"]
            options = question_choices["choices"]
            if len(options) == 4:
                examples.append(
                    InputExample(
483
                        example_id=id,
484
                        question=question,
485
486
487
488
489
490
                        contexts=[
                            options[0]["para"].replace("_", ""),
                            options[1]["para"].replace("_", ""),
                            options[2]["para"].replace("_", ""),
                            options[3]["para"].replace("_", ""),
                        ],
491
                        endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]],
492
493
494
                        label=truth,
                    )
                )
495
496
497
498
499
500
501
502
503
504
505
506
507

        if type == "train":
            assert len(examples) > 1
            assert examples[0].label is not None
        logger.info("len examples: %s}", str(len(examples)))
        logger.info("Three choices: %s", str(three_choice))
        logger.info("Five choices: %s", str(five_choice))
        logger.info("Other choices: %s", str(other_choices))
        logger.info("four choices: %s", str(four_choice))

        return examples


508
509
510
511
512
513
514
515
516
517
518
519
def convert_examples_to_features(
    examples: List[InputExample],
    label_list: List[str],
    max_length: int,
    tokenizer: PreTrainedTokenizer,
    pad_token_segment_id=0,
    pad_on_left=False,
    pad_token=0,
    mask_padding_with_zero=True,
) -> List[InputFeatures]:
    """
    Loads a data file into a list of `InputFeatures`
520
521
    """

522
    label_map = {label: i for i, label in enumerate(label_list)}
523
524
525
526
527

    features = []
    for (ex_index, example) in tqdm.tqdm(enumerate(examples), desc="convert examples to features"):
        if ex_index % 10000 == 0:
            logger.info("Writing example %d of %d" % (ex_index, len(examples)))
Julien Chaumond's avatar
Julien Chaumond committed
528
        choices_inputs = []
529
        for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)):
530
            text_a = context
531
            if example.question.find("_") != -1:
532
533
                # this is for cloze question
                text_b = example.question.replace("_", ending)
534
            else:
535
536
                text_b = example.question + " " + ending

537
            inputs = tokenizer.encode_plus(
Julien Chaumond's avatar
Julien Chaumond committed
538
                text_a, text_b, add_special_tokens=True, max_length=max_length, pad_to_max_length=True,
539
            )
540
541
542
543
544
545
            if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0:
                logger.info(
                    "Attention! you are cropping tokens (swag task is ok). "
                    "If you are training ARC and RACE and you are poping question + options,"
                    "you need to try to use a bigger max seq length!"
                )
546

Julien Chaumond's avatar
Julien Chaumond committed
547
            choices_inputs.append(inputs)
548

Julien Chaumond's avatar
Julien Chaumond committed
549
        label = label_map[example.label]
550

Julien Chaumond's avatar
Julien Chaumond committed
551
552
553
554
555
556
557
        input_ids = [x["input_ids"] for x in choices_inputs]
        attention_mask = (
            [x["attention_mask"] for x in choices_inputs] if "attention_mask" in choices_inputs[0] else None
        )
        token_type_ids = (
            [x["token_type_ids"] for x in choices_inputs] if "token_type_ids" in choices_inputs[0] else None
        )
558

Julien Chaumond's avatar
Julien Chaumond committed
559
560
561
562
563
564
565
566
567
        features.append(
            InputFeatures(
                example_id=example.example_id,
                input_ids=input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                label=label,
            )
        )
568

Julien Chaumond's avatar
Julien Chaumond committed
569
570
571
    for f in features[:2]:
        logger.info("*** Example ***")
        logger.info("feature: %s" % f)
572
573
574
575

    return features


576
577
processors = {"race": RaceProcessor, "swag": SwagProcessor, "arc": ArcProcessor, "syn": SynonymProcessor}
MULTIPLE_CHOICE_TASKS_NUM_LABELS = {"race", 4, "swag", 4, "arc", 4, "syn", 5}