tokenization_gpt2.py 8.22 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

19
import sys
thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
import json
import logging
import os
import regex as re
from io import open

26
27
28
29
30
try:
    from functools import lru_cache
except ImportError:
    # Just a dummy decorator to get the checks to run on python2
    # because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now.
thomwolf's avatar
simple  
thomwolf committed
31
32
    def lru_cache():
        return lambda func: func
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
from .tokenization_utils import PreTrainedTokenizer
thomwolf's avatar
thomwolf committed
35
36
37

logger = logging.getLogger(__name__)

38
39
40
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
thomwolf's avatar
thomwolf committed
41
}
42
43
44
45
46
47

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json",
        'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-vocab.json",
thomwolf's avatar
thomwolf committed
48
        'gpt2-large': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-vocab.json",
49
50
51
52
53
    },
    'merges_file':
    {
        'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt",
        'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-merges.txt",
thomwolf's avatar
thomwolf committed
54
        'gpt2-large': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-merges.txt",
55
    },
thomwolf's avatar
thomwolf committed
56
}
57
58

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
thomwolf's avatar
thomwolf committed
59
    'gpt2': 1024,
60
    'gpt2-medium': 1024,
thomwolf's avatar
thomwolf committed
61
    'gpt2-large': 1024,
thomwolf's avatar
thomwolf committed
62
63
64
65
66
67
68
69
70
71
72
73
74
}

@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
75
    _chr = unichr if sys.version_info[0] == 2 else chr
thomwolf's avatar
thomwolf committed
76
77
78
79
80
81
82
83
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("隆"), ord("卢")+1))+list(range(ord("庐"), ord("每")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1
84
    cs = [_chr(n) for n in cs]
thomwolf's avatar
thomwolf committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    return dict(zip(bs, cs))

def get_pairs(word):
    """Return set of symbol pairs in a word.

    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

99
class GPT2Tokenizer(PreTrainedTokenizer):
thomwolf's avatar
thomwolf committed
100
101
102
103
    """
    GPT-2 BPE tokenizer. Peculiarities:
        - Byte-level BPE
    """
104
105
106
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
thomwolf committed
107

thomwolf's avatar
thomwolf committed
108
    def __init__(self, vocab_file, merges_file, errors='replace', unk_token="<|endoftext|>",
109
                 bos_token="<|endoftext|>", eos_token="<|endoftext|>", **kwargs):
thomwolf's avatar
thomwolf committed
110
        super(GPT2Tokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
111

thomwolf's avatar
thomwolf committed
112
113
114
115
116
117
118
119
120
121
122
123
124
        self.encoder = json.load(open(vocab_file))
        self.decoder = {v:k for k,v in self.encoder.items()}
        self.errors = errors # how to handle errors in decoding
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
        bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_data]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")

125
126
127
    @property
    def vocab_size(self):
        return len(self.encoder)
thomwolf's avatar
thomwolf committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

170
    def _tokenize(self, text):
171
172
173
        """ Tokenize a string. """
        bpe_tokens = []
        for token in re.findall(self.pat, text):
Ben Mann's avatar
Ben Mann committed
174
175
176
177
            if sys.version_info[0] == 2:
                token = ''.join(self.byte_encoder[ord(b)] for b in token)
            else:
                token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
178
179
180
            bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

181
182
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
thomwolf's avatar
thomwolf committed
183
        return self.encoder.get(token, self.encoder.get(self.unk_token))
184

185
186
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
187
        return self.decoder.get(index)
188

189
190
191
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        text = ''.join(tokens)
192
193
194
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
        return text

195
    def save_vocabulary(self, save_directory):
196
        """Save the tokenizer vocabulary and merge files to a directory."""
197
198
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
199
            return
200
201
        vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])
thomwolf's avatar
thomwolf committed
202
203
204
205

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

206
207
208
209
210
211
212
213
        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write(u'#version: 0.2\n')
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
thomwolf's avatar
thomwolf committed
214
                writer.write(' '.join(bpe_tokens) + u'\n')
215
                index += 1
thomwolf's avatar
thomwolf committed
216

217
        return vocab_file, merge_file