tokenization_gpt2.py 8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

19
import sys
thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
import json
import logging
import os
import regex as re
from io import open

26
27
28
29
30
try:
    from functools import lru_cache
except ImportError:
    # Just a dummy decorator to get the checks to run on python2
    # because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now.
thomwolf's avatar
simple  
thomwolf committed
31
32
    def lru_cache():
        return lambda func: func
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
from .tokenization_utils import PreTrainedTokenizer
thomwolf's avatar
thomwolf committed
35
36
37

logger = logging.getLogger(__name__)

38
39
40
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
thomwolf's avatar
thomwolf committed
41
}
42
43
44
45
46
47
48
49
50
51
52
53

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json",
        'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-vocab.json",
    },
    'merges_file':
    {
        'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt",
        'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-merges.txt",
    },
thomwolf's avatar
thomwolf committed
54
}
55
56

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
thomwolf's avatar
thomwolf committed
57
    'gpt2': 1024,
58
    'gpt2-medium': 1024,
thomwolf's avatar
thomwolf committed
59
60
61
62
63
64
65
66
67
68
69
70
71
}

@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
72
    _chr = unichr if sys.version_info[0] == 2 else chr
thomwolf's avatar
thomwolf committed
73
74
75
76
77
78
79
80
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("隆"), ord("卢")+1))+list(range(ord("庐"), ord("每")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1
81
    cs = [_chr(n) for n in cs]
thomwolf's avatar
thomwolf committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    return dict(zip(bs, cs))

def get_pairs(word):
    """Return set of symbol pairs in a word.

    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

96
class GPT2Tokenizer(PreTrainedTokenizer):
thomwolf's avatar
thomwolf committed
97
98
99
100
    """
    GPT-2 BPE tokenizer. Peculiarities:
        - Byte-level BPE
    """
101
102
103
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
thomwolf committed
104

thomwolf's avatar
thomwolf committed
105
    def __init__(self, vocab_file, merges_file, errors='replace', unk_token="<|endoftext|>",
106
                 bos_token="<|endoftext|>", eos_token="<|endoftext|>", **kwargs):
thomwolf's avatar
thomwolf committed
107
        super(GPT2Tokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
108

thomwolf's avatar
thomwolf committed
109
110
111
112
113
114
115
116
117
118
119
120
121
        self.encoder = json.load(open(vocab_file))
        self.decoder = {v:k for k,v in self.encoder.items()}
        self.errors = errors # how to handle errors in decoding
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
        bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_data]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")

122
123
124
    @property
    def vocab_size(self):
        return len(self.encoder)
thomwolf's avatar
thomwolf committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

167
    def _tokenize(self, text):
168
169
170
        """ Tokenize a string. """
        bpe_tokens = []
        for token in re.findall(self.pat, text):
Ben Mann's avatar
Ben Mann committed
171
172
173
174
            if sys.version_info[0] == 2:
                token = ''.join(self.byte_encoder[ord(b)] for b in token)
            else:
                token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
175
176
177
            bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

178
179
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
thomwolf's avatar
thomwolf committed
180
        return self.encoder.get(token, self.encoder.get(self.unk_token))
181

182
183
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
184
        return self.decoder.get(index)
185

186
187
188
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        text = ''.join(tokens)
189
190
191
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
        return text

192
    def save_vocabulary(self, save_directory):
193
        """Save the tokenizer vocabulary and merge files to a directory."""
194
195
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
196
            return
197
198
        vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])
thomwolf's avatar
thomwolf committed
199
200
201
202

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

203
204
205
206
207
208
209
210
        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write(u'#version: 0.2\n')
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
thomwolf's avatar
thomwolf committed
211
                writer.write(' '.join(bpe_tokens) + u'\n')
212
                index += 1
thomwolf's avatar
thomwolf committed
213

214
        return vocab_file, merge_file