test_processor_clip.py 8.19 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import shutil
import tempfile
import unittest

import numpy as np
import pytest

24
from transformers import CLIPTokenizer, CLIPTokenizerFast
Suraj Patil's avatar
Suraj Patil committed
25
26
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
27
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
Suraj Patil's avatar
Suraj Patil committed
28
29
30
31
32


if is_vision_available():
    from PIL import Image

33
    from transformers import CLIPImageProcessor, CLIPProcessor
Suraj Patil's avatar
Suraj Patil committed
34
35
36
37
38
39
40
41


@require_vision
class CLIPProcessorTest(unittest.TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        # fmt: off
42
        vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
Suraj Patil's avatar
Suraj Patil committed
43
44
45
46
47
48
49
50
51
52
53
54
        # fmt: on
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

55
        image_processor_map = {
Suraj Patil's avatar
Suraj Patil committed
56
57
58
59
60
61
62
63
            "do_resize": True,
            "size": 20,
            "do_center_crop": True,
            "crop_size": 18,
            "do_normalize": True,
            "image_mean": [0.48145466, 0.4578275, 0.40821073],
            "image_std": [0.26862954, 0.26130258, 0.27577711],
        }
64
65
66
        self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME)
        with open(self.image_processor_file, "w", encoding="utf-8") as fp:
            json.dump(image_processor_map, fp)
Suraj Patil's avatar
Suraj Patil committed
67
68
69
70

    def get_tokenizer(self, **kwargs):
        return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs)

71
72
73
    def get_rust_tokenizer(self, **kwargs):
        return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)

74
75
    def get_image_processor(self, **kwargs):
        return CLIPImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
Suraj Patil's avatar
Suraj Patil committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def prepare_image_inputs(self):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]

        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        return image_inputs

    def test_save_load_pretrained_default(self):
92
93
        tokenizer_slow = self.get_tokenizer()
        tokenizer_fast = self.get_rust_tokenizer()
94
        image_processor = self.get_image_processor()
Suraj Patil's avatar
Suraj Patil committed
95

96
        processor_slow = CLIPProcessor(tokenizer=tokenizer_slow, image_processor=image_processor)
97
98
        processor_slow.save_pretrained(self.tmpdirname)
        processor_slow = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=False)
Suraj Patil's avatar
Suraj Patil committed
99

100
        processor_fast = CLIPProcessor(tokenizer=tokenizer_fast, image_processor=image_processor)
101
102
        processor_fast.save_pretrained(self.tmpdirname)
        processor_fast = CLIPProcessor.from_pretrained(self.tmpdirname)
Suraj Patil's avatar
Suraj Patil committed
103

104
105
106
107
108
        self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
        self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
        self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
        self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer)
        self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast)
Suraj Patil's avatar
Suraj Patil committed
109

110
111
112
113
        self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string())
        self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string())
        self.assertIsInstance(processor_slow.image_processor, CLIPImageProcessor)
        self.assertIsInstance(processor_fast.image_processor, CLIPImageProcessor)
Suraj Patil's avatar
Suraj Patil committed
114
115

    def test_save_load_pretrained_additional_features(self):
116
        processor = CLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
Suraj Patil's avatar
Suraj Patil committed
117
118
119
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
120
        image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
Suraj Patil's avatar
Suraj Patil committed
121
122
123
124
125
126

        processor = CLIPProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
127
        self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast)
Suraj Patil's avatar
Suraj Patil committed
128

129
130
        self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.image_processor, CLIPImageProcessor)
Suraj Patil's avatar
Suraj Patil committed
131

132
133
    def test_image_processor(self):
        image_processor = self.get_image_processor()
Suraj Patil's avatar
Suraj Patil committed
134
135
        tokenizer = self.get_tokenizer()

136
        processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
Suraj Patil's avatar
Suraj Patil committed
137
138
139

        image_input = self.prepare_image_inputs()

140
        input_image_proc = image_processor(image_input, return_tensors="np")
Suraj Patil's avatar
Suraj Patil committed
141
142
        input_processor = processor(images=image_input, return_tensors="np")

143
144
        for key in input_image_proc.keys():
            self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2)
Suraj Patil's avatar
Suraj Patil committed
145
146

    def test_tokenizer(self):
147
        image_processor = self.get_image_processor()
Suraj Patil's avatar
Suraj Patil committed
148
149
        tokenizer = self.get_tokenizer()

150
        processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
Suraj Patil's avatar
Suraj Patil committed
151
152
153
154
155
156
157
158
159
160
161

        input_str = "lower newer"

        encoded_processor = processor(text=input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def test_processor(self):
162
        image_processor = self.get_image_processor()
Suraj Patil's avatar
Suraj Patil committed
163
164
        tokenizer = self.get_tokenizer()

165
        processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
Suraj Patil's avatar
Suraj Patil committed
166
167
168
169
170
171
172
173
174
175
176
177
178

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"])

        # test if it raises when no input is passed
        with pytest.raises(ValueError):
            processor()

    def test_tokenizer_decode(self):
179
        image_processor = self.get_image_processor()
Suraj Patil's avatar
Suraj Patil committed
180
181
        tokenizer = self.get_tokenizer()

182
        processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
Suraj Patil's avatar
Suraj Patil committed
183
184
185
186
187
188
189

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)
190
191

    def test_model_input_names(self):
192
        image_processor = self.get_image_processor()
193
194
        tokenizer = self.get_tokenizer()

195
        processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
196
197
198
199
200
201
202

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(list(inputs.keys()), processor.model_input_names)