test_processor_clip.py 7.85 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import shutil
import tempfile
import unittest

import numpy as np
import pytest

24
from transformers import CLIPTokenizer, CLIPTokenizerFast
Suraj Patil's avatar
Suraj Patil committed
25
26
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
27
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
Suraj Patil's avatar
Suraj Patil committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41


if is_vision_available():
    from PIL import Image

    from transformers import CLIPFeatureExtractor, CLIPProcessor


@require_vision
class CLIPProcessorTest(unittest.TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        # fmt: off
42
        vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
Suraj Patil's avatar
Suraj Patil committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        # fmt: on
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

        feature_extractor_map = {
            "do_resize": True,
            "size": 20,
            "do_center_crop": True,
            "crop_size": 18,
            "do_normalize": True,
            "image_mean": [0.48145466, 0.4578275, 0.40821073],
            "image_std": [0.26862954, 0.26130258, 0.27577711],
        }
        self.feature_extractor_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
        with open(self.feature_extractor_file, "w", encoding="utf-8") as fp:
            json.dump(feature_extractor_map, fp)

    def get_tokenizer(self, **kwargs):
        return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs)

71
72
73
    def get_rust_tokenizer(self, **kwargs):
        return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)

Suraj Patil's avatar
Suraj Patil committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    def get_feature_extractor(self, **kwargs):
        return CLIPFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def prepare_image_inputs(self):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]

        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        return image_inputs

    def test_save_load_pretrained_default(self):
92
93
        tokenizer_slow = self.get_tokenizer()
        tokenizer_fast = self.get_rust_tokenizer()
Suraj Patil's avatar
Suraj Patil committed
94
95
        feature_extractor = self.get_feature_extractor()

96
97
98
        processor_slow = CLIPProcessor(tokenizer=tokenizer_slow, feature_extractor=feature_extractor)
        processor_slow.save_pretrained(self.tmpdirname)
        processor_slow = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=False)
Suraj Patil's avatar
Suraj Patil committed
99

100
101
102
        processor_fast = CLIPProcessor(tokenizer=tokenizer_fast, feature_extractor=feature_extractor)
        processor_fast.save_pretrained(self.tmpdirname)
        processor_fast = CLIPProcessor.from_pretrained(self.tmpdirname)
Suraj Patil's avatar
Suraj Patil committed
103

104
105
106
107
108
        self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
        self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
        self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
        self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer)
        self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast)
Suraj Patil's avatar
Suraj Patil committed
109

110
111
112
113
        self.assertEqual(processor_slow.feature_extractor.to_json_string(), feature_extractor.to_json_string())
        self.assertEqual(processor_fast.feature_extractor.to_json_string(), feature_extractor.to_json_string())
        self.assertIsInstance(processor_slow.feature_extractor, CLIPFeatureExtractor)
        self.assertIsInstance(processor_fast.feature_extractor, CLIPFeatureExtractor)
Suraj Patil's avatar
Suraj Patil committed
114
115
116
117
118
119
120
121
122
123
124
125
126

    def test_save_load_pretrained_additional_features(self):
        processor = CLIPProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)

        processor = CLIPProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
127
        self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast)
Suraj Patil's avatar
Suraj Patil committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor, CLIPFeatureExtractor)

    def test_feature_extractor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        image_input = self.prepare_image_inputs()

        input_feat_extract = feature_extractor(image_input, return_tensors="np")
        input_processor = processor(images=image_input, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

    def test_tokenizer(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        input_str = "lower newer"

        encoded_processor = processor(text=input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def test_processor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"])

        # test if it raises when no input is passed
        with pytest.raises(ValueError):
            processor()

    def test_tokenizer_decode(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)