test_modeling_electra.py 11.4 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
Lysandre Debut's avatar
Lysandre Debut committed
21
22

from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Lysandre Debut's avatar
Lysandre Debut committed
24
25
26
27
28
29


if is_torch_available():
    from transformers import (
        ElectraConfig,
        ElectraForMaskedLM,
Suraj Patil's avatar
Suraj Patil committed
30
        ElectraForMultipleChoice,
31
        ElectraForPreTraining,
32
        ElectraForQuestionAnswering,
33
34
35
        ElectraForSequenceClassification,
        ElectraForTokenClassification,
        ElectraModel,
Lysandre Debut's avatar
Lysandre Debut committed
36
    )
37
    from transformers.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre Debut's avatar
Lysandre Debut committed
38
39


40
41
class ElectraModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
42
43
        self,
        parent,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
Lysandre Debut's avatar
Lysandre Debut committed
67

68
69
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
Lysandre Debut's avatar
Lysandre Debut committed
70

71
72
        input_mask = None
        if self.use_input_mask:
73
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Lysandre Debut's avatar
Lysandre Debut committed
74

75
76
77
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
Lysandre Debut's avatar
Lysandre Debut committed
78

79
80
81
82
83
84
85
86
        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
            fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
Lysandre Debut's avatar
Lysandre Debut committed
87

88
89
90
91
92
93
94
95
96
97
98
99
100
        config = ElectraConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
101
            return_dict=True,
102
        )
Lysandre Debut's avatar
Lysandre Debut committed
103

104
        return (
Lysandre Debut's avatar
Lysandre Debut committed
105
106
107
108
109
110
111
112
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            fake_token_labels,
113
        )
Lysandre Debut's avatar
Lysandre Debut committed
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
    def create_and_check_electra_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
129
130
131
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
132
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
Lysandre Debut's avatar
Lysandre Debut committed
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
    def create_and_check_electra_for_masked_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
148
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
149
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Lysandre Debut's avatar
Lysandre Debut committed
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    def create_and_check_electra_for_token_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
166
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
167
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

    def create_and_check_electra_for_pretraining(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
184
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels)
Stas Bekman's avatar
Stas Bekman committed
185
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

    def create_and_check_electra_for_sequence_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
202
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
203
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    def create_and_check_electra_for_question_answering(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
219
        result = model(
220
            input_ids,
221
222
223
224
225
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
226
227
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
228

Suraj Patil's avatar
Suraj Patil committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    def create_and_check_electra_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_choices = self.num_choices
        model = ElectraForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
247
        result = model(
Suraj Patil's avatar
Suraj Patil committed
248
249
250
251
252
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
253
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
Suraj Patil's avatar
Suraj Patil committed
254

255
256
257
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
258
259
260
261
262
263
264
265
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            fake_token_labels,
266
267
268
269
270
271
272
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class ElectraModelTest(ModelTesterMixin, unittest.TestCase):
273

274
275
276
277
278
    all_model_classes = (
        (
            ElectraModel,
            ElectraForPreTraining,
            ElectraForMaskedLM,
279
            ElectraForMultipleChoice,
280
281
282
283
284
285
286
            ElectraForTokenClassification,
            ElectraForSequenceClassification,
            ElectraForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
Lysandre Debut's avatar
Lysandre Debut committed
287
288

    def setUp(self):
289
        self.model_tester = ElectraModelTester(self)
Lysandre Debut's avatar
Lysandre Debut committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_electra_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs)

    def test_for_pre_training(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs)

311
312
313
314
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs)

315
316
317
318
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs)

Suraj Patil's avatar
Suraj Patil committed
319
320
321
322
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs)

Lysandre Debut's avatar
Lysandre Debut committed
323
324
    @slow
    def test_model_from_pretrained(self):
325
        for model_name in ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
326
            model = ElectraModel.from_pretrained(model_name)
Lysandre Debut's avatar
Lysandre Debut committed
327
            self.assertIsNotNone(model)