"examples/text-classification/run_tf_glue.py" did not exist on "f98d0ef2a237f546aee949e2b3577c0e59422a5e"
run_summarization.py 9.95 KB
Newer Older
Rémi Louf's avatar
Rémi Louf committed
1
#! /usr/bin/python3
Rémi Louf's avatar
Rémi Louf committed
2
3
4
5
import argparse
import logging
import os
import sys
Aymeric Augustin's avatar
Aymeric Augustin committed
6
from collections import namedtuple
Rémi Louf's avatar
Rémi Louf committed
7
8
9
10
11
12

import torch
from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm

from modeling_bertabs import BertAbs, build_predictor
Aymeric Augustin's avatar
Aymeric Augustin committed
13
from transformers import BertTokenizer
14
15
16

from .utils_summarization import (
    CNNDMDataset,
Rémi Louf's avatar
Rémi Louf committed
17
18
    build_mask,
    compute_token_type_ids,
Aymeric Augustin's avatar
Aymeric Augustin committed
19
    encode_for_summarization,
20
    truncate_or_pad,
Rémi Louf's avatar
Rémi Louf committed
21
22
)

Aymeric Augustin's avatar
Aymeric Augustin committed
23

Rémi Louf's avatar
Rémi Louf committed
24
25
26
27
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)


28
Batch = namedtuple("Batch", ["document_names", "batch_size", "src", "segs", "mask_src", "tgt_str"])
Rémi Louf's avatar
Rémi Louf committed
29
30
31
32


def evaluate(args):
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True)
33
    model = BertAbs.from_pretrained("remi/bertabs-finetuned-extractive-abstractive-summarization")
34
35
    model.to(args.device)
    model.eval()
Rémi Louf's avatar
Rémi Louf committed
36
37
38
39
40
41
42

    symbols = {
        "BOS": tokenizer.vocab["[unused0]"],
        "EOS": tokenizer.vocab["[unused1]"],
        "PAD": tokenizer.vocab["[PAD]"],
    }

Rémi Louf's avatar
Rémi Louf committed
43
44
45
46
47
    if args.compute_rouge:
        reference_summaries = []
        generated_summaries = []

        import nltk
48

49
50
        import rouge

51
        nltk.download("punkt")
Rémi Louf's avatar
Rémi Louf committed
52
        rouge_evaluator = rouge.Rouge(
53
            metrics=["rouge-n", "rouge-l"],
Rémi Louf's avatar
Rémi Louf committed
54
55
56
            max_n=2,
            limit_length=True,
            length_limit=args.beam_size,
57
            length_limit_type="words",
Rémi Louf's avatar
Rémi Louf committed
58
59
60
61
62
63
64
            apply_avg=True,
            apply_best=False,
            alpha=0.5,  # Default F1_score
            weight_factor=1.2,
            stemming=True,
        )

Rémi Louf's avatar
Rémi Louf committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    # these (unused) arguments are defined to keep the compatibility
    # with the legacy code and will be deleted in a next iteration.
    args.result_path = ""
    args.temp_dir = ""

    data_iterator = build_data_iterator(args, tokenizer)
    predictor = build_predictor(args, tokenizer, symbols, model)

    logger.info("***** Running evaluation *****")
    logger.info("  Number examples = %d", len(data_iterator.dataset))
    logger.info("  Batch size = %d", args.batch_size)
    logger.info("")
    logger.info("***** Beam Search parameters *****")
    logger.info("  Beam size = %d", args.beam_size)
    logger.info("  Minimum length = %d", args.min_length)
    logger.info("  Maximum length = %d", args.max_length)
    logger.info("  Alpha (length penalty) = %.2f", args.alpha)
    logger.info("  Trigrams %s be blocked", ("will" if args.block_trigram else "will NOT"))

    for batch in tqdm(data_iterator):
        batch_data = predictor.translate_batch(batch)
        translations = predictor.from_batch(batch_data)
        summaries = [format_summary(t) for t in translations]
        save_summaries(summaries, args.summaries_output_dir, batch.document_names)

Rémi Louf's avatar
Rémi Louf committed
90
91
92
93
94
95
96
97
98
99
        if args.compute_rouge:
            reference_summaries += batch.tgt_str
            generated_summaries += summaries

    if args.compute_rouge:
        scores = rouge_evaluator.get_scores(generated_summaries, reference_summaries)
        str_scores = format_rouge_scores(scores)
        save_rouge_scores(str_scores)
        print(str_scores)

Rémi Louf's avatar
Rémi Louf committed
100

Rémi Louf's avatar
Rémi Louf committed
101
def save_summaries(summaries, path, original_document_name):
Lysandre's avatar
Lysandre committed
102
    """Write the summaries in fies that are prefixed by the original
Rémi Louf's avatar
Rémi Louf committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    files' name with the `_summary` appended.

    Attributes:
        original_document_names: List[string]
            Name of the document that was summarized.
        path: string
            Path were the summaries will be written
        summaries: List[string]
            The summaries that we produced.
    """
    for summary, document_name in zip(summaries, original_document_name):
        # Prepare the summary file's name
        if "." in document_name:
            bare_document_name = ".".join(document_name.split(".")[:-1])
            extension = document_name.split(".")[-1]
            name = bare_document_name + "_summary." + extension
        else:
            name = document_name + "_summary"

        file_path = os.path.join(path, name)
        with open(file_path, "w") as output:
            output.write(summary)


Rémi Louf's avatar
Rémi Louf committed
127
def format_summary(translation):
Lysandre's avatar
Lysandre committed
128
    """Transforms the output of the `from_batch` function
Rémi Louf's avatar
Rémi Louf committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    into nicely formatted summaries.
    """
    raw_summary, _, _ = translation
    summary = (
        raw_summary.replace("[unused0]", "")
        .replace("[unused3]", "")
        .replace("[PAD]", "")
        .replace("[unused1]", "")
        .replace(r" +", " ")
        .replace(" [unused2] ", ". ")
        .replace("[unused2]", "")
        .strip()
    )

    return summary


Rémi Louf's avatar
Rémi Louf committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def format_rouge_scores(scores):
    return """\n
****** ROUGE SCORES ******

** ROUGE 1
F1        >> {:.3f}
Precision >> {:.3f}
Recall    >> {:.3f}

** ROUGE 2
F1        >> {:.3f}
Precision >> {:.3f}
Recall    >> {:.3f}

** ROUGE L
F1        >> {:.3f}
Precision >> {:.3f}
Recall    >> {:.3f}""".format(
164
165
166
167
168
169
170
171
172
        scores["rouge-1"]["f"],
        scores["rouge-1"]["p"],
        scores["rouge-1"]["r"],
        scores["rouge-2"]["f"],
        scores["rouge-2"]["p"],
        scores["rouge-2"]["r"],
        scores["rouge-l"]["f"],
        scores["rouge-l"]["p"],
        scores["rouge-l"]["r"],
Rémi Louf's avatar
Rémi Louf committed
173
174
175
176
177
178
179
180
    )


def save_rouge_scores(str_scores):
    with open("rouge_scores.txt", "w") as output:
        output.write(str_scores)


Rémi Louf's avatar
Rémi Louf committed
181
182
183
184
185
186
187
188
#
# LOAD the dataset
#


def build_data_iterator(args, tokenizer):
    dataset = load_and_cache_examples(args, tokenizer)
    sampler = SequentialSampler(dataset)
189
190
191
192

    def collate_fn(data):
        return collate(data, tokenizer, block_size=512, device=args.device)

Lysandre's avatar
Lysandre committed
193
194
195
196
197
198
    iterator = DataLoader(
        dataset,
        sampler=sampler,
        batch_size=args.batch_size,
        collate_fn=collate_fn,
    )
Rémi Louf's avatar
Rémi Louf committed
199
200
201
202
203

    return iterator


def load_and_cache_examples(args, tokenizer):
204
    dataset = CNNDMDataset(args.documents_dir)
Rémi Louf's avatar
Rémi Louf committed
205
206
207
    return dataset


Rémi Louf's avatar
Rémi Louf committed
208
def collate(data, tokenizer, block_size, device):
Lysandre's avatar
Lysandre committed
209
    """Collate formats the data passed to the data loader.
Rémi Louf's avatar
Rémi Louf committed
210
211
212
213
214
215
216

    In particular we tokenize the data batch after batch to avoid keeping them
    all in memory. We output the data as a namedtuple to fit the original BertAbs's
    API.
    """
    data = [x for x in data if not len(x[1]) == 0]  # remove empty_files
    names = [name for name, _, _ in data]
Rémi Louf's avatar
Rémi Louf committed
217
    summaries = [" ".join(summary_list) for _, _, summary_list in data]
Rémi Louf's avatar
Rémi Louf committed
218

219
    encoded_text = [encode_for_summarization(story, summary, tokenizer) for _, story, summary in data]
Rémi Louf's avatar
Rémi Louf committed
220
    encoded_stories = torch.tensor(
221
        [truncate_or_pad(story, block_size, tokenizer.pad_token_id) for story, _ in encoded_text]
Rémi Louf's avatar
Rémi Louf committed
222
    )
Rémi Louf's avatar
Rémi Louf committed
223
224
    encoder_token_type_ids = compute_token_type_ids(encoded_stories, tokenizer.cls_token_id)
    encoder_mask = build_mask(encoded_stories, tokenizer.pad_token_id)
Rémi Louf's avatar
Rémi Louf committed
225
226
227

    batch = Batch(
        document_names=names,
Rémi Louf's avatar
Rémi Louf committed
228
        batch_size=len(encoded_stories),
Rémi Louf's avatar
Rémi Louf committed
229
230
231
        src=encoded_stories.to(device),
        segs=encoder_token_type_ids.to(device),
        mask_src=encoder_mask.to(device),
Rémi Louf's avatar
Rémi Louf committed
232
        tgt_str=summaries,
Rémi Louf's avatar
Rémi Louf committed
233
234
235
236
237
238
    )

    return batch


def decode_summary(summary_tokens, tokenizer):
Lysandre's avatar
Lysandre committed
239
    """Decode the summary and return it in a format
Rémi Louf's avatar
Rémi Louf committed
240
241
242
243
244
245
246
247
248
249
    suitable for evaluation.
    """
    summary_tokens = summary_tokens.to("cpu").numpy()
    summary = tokenizer.decode(summary_tokens)
    sentences = summary.split(".")
    sentences = [s + "." for s in sentences]
    return sentences


def main():
Lysandre's avatar
Lysandre committed
250
    """The main function defines the interface with the users."""
Rémi Louf's avatar
Rémi Louf committed
251
252
253
254
255
256
257
258
259
260
261
262
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--documents_dir",
        default=None,
        type=str,
        required=True,
        help="The folder where the documents to summarize are located.",
    )
    parser.add_argument(
        "--summaries_output_dir",
        default=None,
        type=str,
263
264
        required=False,
        help="The folder in wich the summaries should be written. Defaults to the folder where the documents are",
Rémi Louf's avatar
Rémi Louf committed
265
    )
Rémi Louf's avatar
Rémi Louf committed
266
267
268
269
270
271
272
    parser.add_argument(
        "--compute_rouge",
        default=False,
        type=bool,
        required=False,
        help="Compute the ROUGE metrics during evaluation. Only available for the CNN/DailyMail dataset.",
    )
Rémi Louf's avatar
Rémi Louf committed
273
274
    # EVALUATION options
    parser.add_argument(
Lysandre's avatar
Lysandre committed
275
276
277
278
        "--no_cuda",
        default=False,
        type=bool,
        help="Whether to force the execution on CPU.",
Rémi Louf's avatar
Rémi Louf committed
279
280
    )
    parser.add_argument(
Lysandre's avatar
Lysandre committed
281
282
283
284
        "--batch_size",
        default=4,
        type=int,
        help="Batch size per GPU/CPU for training.",
Rémi Louf's avatar
Rémi Louf committed
285
286
287
    )
    # BEAM SEARCH arguments
    parser.add_argument(
Lysandre's avatar
Lysandre committed
288
289
290
291
        "--min_length",
        default=50,
        type=int,
        help="Minimum number of tokens for the summaries.",
Rémi Louf's avatar
Rémi Louf committed
292
293
    )
    parser.add_argument(
Lysandre's avatar
Lysandre committed
294
295
296
297
        "--max_length",
        default=200,
        type=int,
        help="Maixmum number of tokens for the summaries.",
Rémi Louf's avatar
Rémi Louf committed
298
299
    )
    parser.add_argument(
Lysandre's avatar
Lysandre committed
300
301
302
303
        "--beam_size",
        default=5,
        type=int,
        help="The number of beams to start with for each example.",
Rémi Louf's avatar
Rémi Louf committed
304
305
    )
    parser.add_argument(
Lysandre's avatar
Lysandre committed
306
307
308
309
        "--alpha",
        default=0.95,
        type=float,
        help="The value of alpha for the length penalty in the beam search.",
Rémi Louf's avatar
Rémi Louf committed
310
311
312
313
314
315
316
317
318
    )
    parser.add_argument(
        "--block_trigram",
        default=True,
        type=bool,
        help="Whether to block the existence of repeating trigrams in the text generated by beam search.",
    )
    args = parser.parse_args()

Rémi Louf's avatar
Rémi Louf committed
319
    # Select device (distibuted not available)
320
    args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
Rémi Louf's avatar
Rémi Louf committed
321
322

    # Check the existence of directories
323
324
325
    if not args.summaries_output_dir:
        args.summaries_output_dir = args.documents_dir

Rémi Louf's avatar
Rémi Louf committed
326
327
328
329
    if not documents_dir_is_valid(args.documents_dir):
        raise FileNotFoundError(
            "We could not find the directory you specified for the documents to summarize, or it was empty. Please specify a valid path."
        )
Rémi Louf's avatar
Rémi Louf committed
330
    os.makedirs(args.summaries_output_dir, exist_ok=True)
Rémi Louf's avatar
Rémi Louf committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

    evaluate(args)


def documents_dir_is_valid(path):
    if not os.path.exists(path):
        return False

    file_list = os.listdir(path)
    if len(file_list) == 0:
        return False

    return True


if __name__ == "__main__":
    main()