run_summarization.py 9.75 KB
Newer Older
Rémi Louf's avatar
Rémi Louf committed
1
#! /usr/bin/python3
Rémi Louf's avatar
Rémi Louf committed
2
3
4
5
import argparse
import logging
import os
import sys
Aymeric Augustin's avatar
Aymeric Augustin committed
6
from collections import namedtuple
Rémi Louf's avatar
Rémi Louf committed
7
8
9
10
11
12

import torch
from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm

from modeling_bertabs import BertAbs, build_predictor
Aymeric Augustin's avatar
Aymeric Augustin committed
13
from transformers import BertTokenizer
14
15
16

from .utils_summarization import (
    CNNDMDataset,
Rémi Louf's avatar
Rémi Louf committed
17
18
    build_mask,
    compute_token_type_ids,
Aymeric Augustin's avatar
Aymeric Augustin committed
19
    encode_for_summarization,
20
    truncate_or_pad,
Rémi Louf's avatar
Rémi Louf committed
21
22
)

Aymeric Augustin's avatar
Aymeric Augustin committed
23

Rémi Louf's avatar
Rémi Louf committed
24
25
26
27
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)


28
Batch = namedtuple("Batch", ["document_names", "batch_size", "src", "segs", "mask_src", "tgt_str"])
Rémi Louf's avatar
Rémi Louf committed
29
30
31
32


def evaluate(args):
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True)
33
34
35
    model = BertAbs.from_pretrained("bertabs-finetuned-cnndm")
    model.to(args.device)
    model.eval()
Rémi Louf's avatar
Rémi Louf committed
36
37
38
39
40
41
42

    symbols = {
        "BOS": tokenizer.vocab["[unused0]"],
        "EOS": tokenizer.vocab["[unused1]"],
        "PAD": tokenizer.vocab["[PAD]"],
    }

Rémi Louf's avatar
Rémi Louf committed
43
44
45
46
47
48
    if args.compute_rouge:
        reference_summaries = []
        generated_summaries = []

        import rouge
        import nltk
49
50

        nltk.download("punkt")
Rémi Louf's avatar
Rémi Louf committed
51
        rouge_evaluator = rouge.Rouge(
52
            metrics=["rouge-n", "rouge-l"],
Rémi Louf's avatar
Rémi Louf committed
53
54
55
            max_n=2,
            limit_length=True,
            length_limit=args.beam_size,
56
            length_limit_type="words",
Rémi Louf's avatar
Rémi Louf committed
57
58
59
60
61
62
63
            apply_avg=True,
            apply_best=False,
            alpha=0.5,  # Default F1_score
            weight_factor=1.2,
            stemming=True,
        )

Rémi Louf's avatar
Rémi Louf committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    # these (unused) arguments are defined to keep the compatibility
    # with the legacy code and will be deleted in a next iteration.
    args.result_path = ""
    args.temp_dir = ""

    data_iterator = build_data_iterator(args, tokenizer)
    predictor = build_predictor(args, tokenizer, symbols, model)

    logger.info("***** Running evaluation *****")
    logger.info("  Number examples = %d", len(data_iterator.dataset))
    logger.info("  Batch size = %d", args.batch_size)
    logger.info("")
    logger.info("***** Beam Search parameters *****")
    logger.info("  Beam size = %d", args.beam_size)
    logger.info("  Minimum length = %d", args.min_length)
    logger.info("  Maximum length = %d", args.max_length)
    logger.info("  Alpha (length penalty) = %.2f", args.alpha)
    logger.info("  Trigrams %s be blocked", ("will" if args.block_trigram else "will NOT"))

    for batch in tqdm(data_iterator):
        batch_data = predictor.translate_batch(batch)
        translations = predictor.from_batch(batch_data)
        summaries = [format_summary(t) for t in translations]
        save_summaries(summaries, args.summaries_output_dir, batch.document_names)

Rémi Louf's avatar
Rémi Louf committed
89
90
91
92
93
94
95
96
97
98
        if args.compute_rouge:
            reference_summaries += batch.tgt_str
            generated_summaries += summaries

    if args.compute_rouge:
        scores = rouge_evaluator.get_scores(generated_summaries, reference_summaries)
        str_scores = format_rouge_scores(scores)
        save_rouge_scores(str_scores)
        print(str_scores)

Rémi Louf's avatar
Rémi Louf committed
99

Rémi Louf's avatar
Rémi Louf committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def save_summaries(summaries, path, original_document_name):
    """ Write the summaries in fies that are prefixed by the original
    files' name with the `_summary` appended.

    Attributes:
        original_document_names: List[string]
            Name of the document that was summarized.
        path: string
            Path were the summaries will be written
        summaries: List[string]
            The summaries that we produced.
    """
    for summary, document_name in zip(summaries, original_document_name):
        # Prepare the summary file's name
        if "." in document_name:
            bare_document_name = ".".join(document_name.split(".")[:-1])
            extension = document_name.split(".")[-1]
            name = bare_document_name + "_summary." + extension
        else:
            name = document_name + "_summary"

        file_path = os.path.join(path, name)
        with open(file_path, "w") as output:
            output.write(summary)


Rémi Louf's avatar
Rémi Louf committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def format_summary(translation):
    """ Transforms the output of the `from_batch` function
    into nicely formatted summaries.
    """
    raw_summary, _, _ = translation
    summary = (
        raw_summary.replace("[unused0]", "")
        .replace("[unused3]", "")
        .replace("[PAD]", "")
        .replace("[unused1]", "")
        .replace(r" +", " ")
        .replace(" [unused2] ", ". ")
        .replace("[unused2]", "")
        .strip()
    )

    return summary


Rémi Louf's avatar
Rémi Louf committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def format_rouge_scores(scores):
    return """\n
****** ROUGE SCORES ******

** ROUGE 1
F1        >> {:.3f}
Precision >> {:.3f}
Recall    >> {:.3f}

** ROUGE 2
F1        >> {:.3f}
Precision >> {:.3f}
Recall    >> {:.3f}

** ROUGE L
F1        >> {:.3f}
Precision >> {:.3f}
Recall    >> {:.3f}""".format(
163
164
165
166
167
168
169
170
171
        scores["rouge-1"]["f"],
        scores["rouge-1"]["p"],
        scores["rouge-1"]["r"],
        scores["rouge-2"]["f"],
        scores["rouge-2"]["p"],
        scores["rouge-2"]["r"],
        scores["rouge-l"]["f"],
        scores["rouge-l"]["p"],
        scores["rouge-l"]["r"],
Rémi Louf's avatar
Rémi Louf committed
172
173
174
175
176
177
178
179
    )


def save_rouge_scores(str_scores):
    with open("rouge_scores.txt", "w") as output:
        output.write(str_scores)


Rémi Louf's avatar
Rémi Louf committed
180
181
182
183
184
185
186
187
#
# LOAD the dataset
#


def build_data_iterator(args, tokenizer):
    dataset = load_and_cache_examples(args, tokenizer)
    sampler = SequentialSampler(dataset)
188
189
190
191

    def collate_fn(data):
        return collate(data, tokenizer, block_size=512, device=args.device)

192
    iterator = DataLoader(dataset, sampler=sampler, batch_size=args.batch_size, collate_fn=collate_fn,)
Rémi Louf's avatar
Rémi Louf committed
193
194
195
196
197

    return iterator


def load_and_cache_examples(args, tokenizer):
198
    dataset = CNNDMDataset(args.documents_dir)
Rémi Louf's avatar
Rémi Louf committed
199
200
201
    return dataset


Rémi Louf's avatar
Rémi Louf committed
202
def collate(data, tokenizer, block_size, device):
Rémi Louf's avatar
Rémi Louf committed
203
204
205
206
207
208
209
210
    """ Collate formats the data passed to the data loader.

    In particular we tokenize the data batch after batch to avoid keeping them
    all in memory. We output the data as a namedtuple to fit the original BertAbs's
    API.
    """
    data = [x for x in data if not len(x[1]) == 0]  # remove empty_files
    names = [name for name, _, _ in data]
Rémi Louf's avatar
Rémi Louf committed
211
    summaries = [" ".join(summary_list) for _, _, summary_list in data]
Rémi Louf's avatar
Rémi Louf committed
212

213
    encoded_text = [encode_for_summarization(story, summary, tokenizer) for _, story, summary in data]
Rémi Louf's avatar
Rémi Louf committed
214
    encoded_stories = torch.tensor(
215
        [truncate_or_pad(story, block_size, tokenizer.pad_token_id) for story, _ in encoded_text]
Rémi Louf's avatar
Rémi Louf committed
216
    )
Rémi Louf's avatar
Rémi Louf committed
217
218
    encoder_token_type_ids = compute_token_type_ids(encoded_stories, tokenizer.cls_token_id)
    encoder_mask = build_mask(encoded_stories, tokenizer.pad_token_id)
Rémi Louf's avatar
Rémi Louf committed
219
220
221

    batch = Batch(
        document_names=names,
Rémi Louf's avatar
Rémi Louf committed
222
        batch_size=len(encoded_stories),
Rémi Louf's avatar
Rémi Louf committed
223
224
225
        src=encoded_stories.to(device),
        segs=encoder_token_type_ids.to(device),
        mask_src=encoder_mask.to(device),
Rémi Louf's avatar
Rémi Louf committed
226
        tgt_str=summaries,
Rémi Louf's avatar
Rémi Louf committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    )

    return batch


def decode_summary(summary_tokens, tokenizer):
    """ Decode the summary and return it in a format
    suitable for evaluation.
    """
    summary_tokens = summary_tokens.to("cpu").numpy()
    summary = tokenizer.decode(summary_tokens)
    sentences = summary.split(".")
    sentences = [s + "." for s in sentences]
    return sentences


def main():
    """ The main function defines the interface with the users.
    """
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--documents_dir",
        default=None,
        type=str,
        required=True,
        help="The folder where the documents to summarize are located.",
    )
    parser.add_argument(
        "--summaries_output_dir",
        default=None,
        type=str,
258
259
        required=False,
        help="The folder in wich the summaries should be written. Defaults to the folder where the documents are",
Rémi Louf's avatar
Rémi Louf committed
260
    )
Rémi Louf's avatar
Rémi Louf committed
261
262
263
264
265
266
267
    parser.add_argument(
        "--compute_rouge",
        default=False,
        type=bool,
        required=False,
        help="Compute the ROUGE metrics during evaluation. Only available for the CNN/DailyMail dataset.",
    )
Rémi Louf's avatar
Rémi Louf committed
268
269
    # EVALUATION options
    parser.add_argument(
270
        "--no_cuda", default=False, type=bool, help="Whether to force the execution on CPU.",
Rémi Louf's avatar
Rémi Louf committed
271
272
273
274
275
276
    )
    parser.add_argument(
        "--batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.",
    )
    # BEAM SEARCH arguments
    parser.add_argument(
277
        "--min_length", default=50, type=int, help="Minimum number of tokens for the summaries.",
Rémi Louf's avatar
Rémi Louf committed
278
279
    )
    parser.add_argument(
280
        "--max_length", default=200, type=int, help="Maixmum number of tokens for the summaries.",
Rémi Louf's avatar
Rémi Louf committed
281
282
    )
    parser.add_argument(
283
        "--beam_size", default=5, type=int, help="The number of beams to start with for each example.",
Rémi Louf's avatar
Rémi Louf committed
284
285
    )
    parser.add_argument(
286
        "--alpha", default=0.95, type=float, help="The value of alpha for the length penalty in the beam search.",
Rémi Louf's avatar
Rémi Louf committed
287
288
289
290
291
292
293
294
295
    )
    parser.add_argument(
        "--block_trigram",
        default=True,
        type=bool,
        help="Whether to block the existence of repeating trigrams in the text generated by beam search.",
    )
    args = parser.parse_args()

Rémi Louf's avatar
Rémi Louf committed
296
    # Select device (distibuted not available)
297
    args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
Rémi Louf's avatar
Rémi Louf committed
298
299

    # Check the existence of directories
300
301
302
    if not args.summaries_output_dir:
        args.summaries_output_dir = args.documents_dir

Rémi Louf's avatar
Rémi Louf committed
303
304
305
306
    if not documents_dir_is_valid(args.documents_dir):
        raise FileNotFoundError(
            "We could not find the directory you specified for the documents to summarize, or it was empty. Please specify a valid path."
        )
Rémi Louf's avatar
Rémi Louf committed
307
    os.makedirs(args.summaries_output_dir, exist_ok=True)
Rémi Louf's avatar
Rémi Louf committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

    evaluate(args)


def documents_dir_is_valid(path):
    if not os.path.exists(path):
        return False

    file_list = os.listdir(path)
    if len(file_list) == 0:
        return False

    return True


if __name__ == "__main__":
    main()