test_image_processing_blip.py 4.95 KB
Newer Older
Younes Belkada's avatar
Younes Belkada committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers.testing_utils import require_torch, require_vision
20
from transformers.utils import is_vision_available
Younes Belkada's avatar
Younes Belkada committed
21

22
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
Younes Belkada's avatar
Younes Belkada committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


if is_vision_available():
    from transformers import BlipImageProcessor


class BlipImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
        do_normalize=True,
        do_pad=False,
        image_mean=[0.48145466, 0.4578275, 0.40821073],
        image_std=[0.26862954, 0.26130258, 0.27577711],
        do_convert_rgb=True,
    ):
        size = size if size is not None else {"height": 20, "width": 20}
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_pad = do_pad
        self.do_convert_rgb = do_convert_rgb

61
    def prepare_image_processor_dict(self):
Younes Belkada's avatar
Younes Belkada committed
62
63
64
65
66
67
68
69
70
71
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_convert_rgb": self.do_convert_rgb,
            "do_pad": self.do_pad,
        }

72
73
74
75
76
77
78
79
80
81
82
83
84
    def expected_output_image_shape(self, images):
        return 3, self.size["height"], self.size["width"]

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )
Younes Belkada's avatar
Younes Belkada committed
85
86
87
88


@require_torch
@require_vision
89
class BlipImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
90
    image_processing_class = BlipImageProcessor if is_vision_available() else None
Younes Belkada's avatar
Younes Belkada committed
91
92

    def setUp(self):
93
        self.image_processor_tester = BlipImageProcessingTester(self)
Younes Belkada's avatar
Younes Belkada committed
94
95

    @property
96
97
98
99
100
101
102
103
104
105
106
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_resize"))
        self.assertTrue(hasattr(image_processor, "size"))
        self.assertTrue(hasattr(image_processor, "do_normalize"))
        self.assertTrue(hasattr(image_processor, "image_mean"))
        self.assertTrue(hasattr(image_processor, "image_std"))
        self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
Younes Belkada's avatar
Younes Belkada committed
107
108
109
110


@require_torch
@require_vision
111
class BlipImageProcessingTestFourChannels(ImageProcessingTestMixin, unittest.TestCase):
112
    image_processing_class = BlipImageProcessor if is_vision_available() else None
Younes Belkada's avatar
Younes Belkada committed
113
114

    def setUp(self):
115
        self.image_processor_tester = BlipImageProcessingTester(self, num_channels=4)
Younes Belkada's avatar
Younes Belkada committed
116
117
118
        self.expected_encoded_image_num_channels = 3

    @property
119
120
121
122
123
124
125
126
127
128
129
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_resize"))
        self.assertTrue(hasattr(image_processor, "size"))
        self.assertTrue(hasattr(image_processor, "do_normalize"))
        self.assertTrue(hasattr(image_processor, "image_mean"))
        self.assertTrue(hasattr(image_processor, "image_std"))
        self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
Younes Belkada's avatar
Younes Belkada committed
130

131
132
133
    @unittest.skip("BlipImageProcessor does not support 4 channels yet")  # FIXME Amy
    def test_call_numpy(self):
        return super().test_call_numpy()
Younes Belkada's avatar
Younes Belkada committed
134

135
136
137
    @unittest.skip("BlipImageProcessor does not support 4 channels yet")  # FIXME Amy
    def test_call_pytorch(self):
        return super().test_call_torch()