"vscode:/vscode.git/clone" did not exist on "c2ea914f7df6e74262375bffb0e9b112ca612a00"
test_image_processing_blip.py 10.5 KB
Newer Older
Younes Belkada's avatar
Younes Belkada committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin
Younes Belkada's avatar
Younes Belkada committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import BlipImageProcessor


class BlipImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
        do_normalize=True,
        do_pad=False,
        image_mean=[0.48145466, 0.4578275, 0.40821073],
        image_std=[0.26862954, 0.26130258, 0.27577711],
        do_convert_rgb=True,
    ):
        size = size if size is not None else {"height": 20, "width": 20}
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_pad = do_pad
        self.do_convert_rgb = do_convert_rgb

68
    def prepare_image_processor_dict(self):
Younes Belkada's avatar
Younes Belkada committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_convert_rgb": self.do_convert_rgb,
            "do_pad": self.do_pad,
        }

    def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

        if equal_resolution:
            image_inputs = []
            for i in range(self.batch_size):
                image_inputs.append(
                    np.random.randint(
                        255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
                    )
                )
        else:
            image_inputs = []
            for i in range(self.batch_size):
                width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
                image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))

        if not numpify and not torchify:
            # PIL expects the channel dimension as last dimension
            image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        if torchify:
            image_inputs = [torch.from_numpy(x) for x in image_inputs]

        return image_inputs


@require_torch
@require_vision
112
113
class BlipImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
    image_processing_class = BlipImageProcessor if is_vision_available() else None
Younes Belkada's avatar
Younes Belkada committed
114
115

    def setUp(self):
116
        self.image_processor_tester = BlipImageProcessingTester(self)
Younes Belkada's avatar
Younes Belkada committed
117
118

    @property
119
120
121
122
123
124
125
126
127
128
129
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_resize"))
        self.assertTrue(hasattr(image_processor, "size"))
        self.assertTrue(hasattr(image_processor, "do_normalize"))
        self.assertTrue(hasattr(image_processor, "image_mean"))
        self.assertTrue(hasattr(image_processor, "image_std"))
        self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
Younes Belkada's avatar
Younes Belkada committed
130
131
132
133
134

    def test_batch_feature(self):
        pass

    def test_call_pil(self):
135
136
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
Younes Belkada's avatar
Younes Belkada committed
137
        # create random PIL images
138
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
Younes Belkada's avatar
Younes Belkada committed
139
140
141
142
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
143
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
144
145
146
147
        self.assertEqual(
            encoded_images.shape,
            (
                1,
148
149
150
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
151
152
153
154
            ),
        )

        # Test batched
155
        encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
156
157
158
        self.assertEqual(
            encoded_images.shape,
            (
159
160
161
162
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
163
164
165
166
            ),
        )

    def test_call_numpy(self):
167
168
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
Younes Belkada's avatar
Younes Belkada committed
169
        # create random numpy tensors
170
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True)
Younes Belkada's avatar
Younes Belkada committed
171
172
173
174
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
175
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
176
177
178
179
        self.assertEqual(
            encoded_images.shape,
            (
                1,
180
181
182
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
183
184
185
186
            ),
        )

        # Test batched
187
        encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
188
189
190
        self.assertEqual(
            encoded_images.shape,
            (
191
192
193
194
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
195
196
197
198
            ),
        )

    def test_call_pytorch(self):
199
200
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
Younes Belkada's avatar
Younes Belkada committed
201
        # create random PyTorch tensors
202
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True)
Younes Belkada's avatar
Younes Belkada committed
203
204
205
206
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
207
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
208
209
210
211
        self.assertEqual(
            encoded_images.shape,
            (
                1,
212
213
214
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
215
216
217
218
            ),
        )

        # Test batched
219
        encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
220
221
222
        self.assertEqual(
            encoded_images.shape,
            (
223
224
225
226
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
227
228
229
230
231
232
            ),
        )


@require_torch
@require_vision
233
234
class BlipImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unittest.TestCase):
    image_processing_class = BlipImageProcessor if is_vision_available() else None
Younes Belkada's avatar
Younes Belkada committed
235
236

    def setUp(self):
237
        self.image_processor_tester = BlipImageProcessingTester(self, num_channels=4)
Younes Belkada's avatar
Younes Belkada committed
238
239
240
        self.expected_encoded_image_num_channels = 3

    @property
241
242
243
244
245
246
247
248
249
250
251
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_resize"))
        self.assertTrue(hasattr(image_processor, "size"))
        self.assertTrue(hasattr(image_processor, "do_normalize"))
        self.assertTrue(hasattr(image_processor, "image_mean"))
        self.assertTrue(hasattr(image_processor, "image_std"))
        self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
Younes Belkada's avatar
Younes Belkada committed
252
253
254
255
256

    def test_batch_feature(self):
        pass

    def test_call_pil_four_channels(self):
257
258
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
Younes Belkada's avatar
Younes Belkada committed
259
        # create random PIL images
260
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
Younes Belkada's avatar
Younes Belkada committed
261
262
263
264
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
265
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
266
267
268
269
270
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.expected_encoded_image_num_channels,
271
272
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
273
274
275
276
            ),
        )

        # Test batched
277
        encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
278
279
280
        self.assertEqual(
            encoded_images.shape,
            (
281
                self.image_processor_tester.batch_size,
Younes Belkada's avatar
Younes Belkada committed
282
                self.expected_encoded_image_num_channels,
283
284
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
285
286
            ),
        )