test_modeling_marian.py 9.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
from transformers.file_utils import cached_property
21
from transformers.hf_api import HfApi
22
from transformers.testing_utils import require_torch, slow, torch_device
23
24
25
26


if is_torch_available():
    import torch
27

28
29
30
    from transformers import (
        AutoConfig,
        AutoModelWithLMHead,
31
32
        AutoTokenizer,
        MarianConfig,
33
        MarianMTModel,
34
        MarianTokenizer,
35
    )
36
    from transformers.convert_marian_to_pytorch import (
37
        ORG_NAME,
38
39
40
        convert_hf_name_to_opus_name,
        convert_opus_name_to_hf_name,
    )
41
    from transformers.pipelines import TranslationPipeline
42
43
44
45


class ModelManagementTests(unittest.TestCase):
    @slow
46
    def test_model_names(self):
47
        model_list = HfApi().model_list()
48
49
50
51
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)]
        bad_model_ids = [mid for mid in model_ids if "+" in model_ids]
        self.assertListEqual([], bad_model_ids)
        self.assertGreater(len(model_ids), 500)
52
53
54


@require_torch
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
class MarianIntegrationTest(unittest.TestCase):
    src = "en"
    tgt = "de"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
        "Tom asked his teacher for advice.",
        "That's how I would do it.",
        "Tom really admired Mary's courage.",
        "Turn around and close your eyes.",
    ]
    expected_text = [
        "Ich bin ein kleiner Frosch.",
        "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
        "Tom bat seinen Lehrer um Rat.",
        "So würde ich das machen.",
        "Tom bewunderte Marias Mut wirklich.",
        "Drehen Sie sich um und schließen Sie die Augen.",
    ]
    # ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen

76
77
    @classmethod
    def setUpClass(cls) -> None:
78
79
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
        cls.tokenizer: MarianTokenizer = AutoTokenizer.from_pretrained(cls.model_name)
80
81
82
83
84
        cls.eos_token_id = cls.tokenizer.eos_token_id
        return cls

    @cached_property
    def model(self):
85
86
87
88
89
90
        model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)

91
92
93
94
95
        if torch_device == "cuda":
            return model.half()
        else:
            return model

96
97
98
99
100
    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
101
        model_inputs = self.tokenizer.prepare_seq2seq_batch(src_texts=self.src_text, **tokenizer_kwargs).to(
102
103
            torch_device
        )
104
        self.assertEqual(self.model.device, model_inputs.input_ids.device)
105
        generated_ids = self.model.generate(
106
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2
107
108
109
110
111
112
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words


class TestMarian_EN_DE_More(MarianIntegrationTest):
113
114
    @slow
    def test_forward(self):
115
        src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
116
        expected_ids = [38, 121, 14, 697, 38848, 0]
117

118
        model_inputs: dict = self.tokenizer.prepare_seq2seq_batch(src, tgt_texts=tgt).to(torch_device)
119
        self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist())
120
121
122
123
124
125
126
127
128
129
130

        desired_keys = {
            "input_ids",
            "attention_mask",
            "decoder_input_ids",
            "decoder_attention_mask",
        }
        self.assertSetEqual(desired_keys, set(model_inputs.keys()))
        with torch.no_grad():
            logits, *enc_features = self.model(**model_inputs)
        max_indices = logits.argmax(-1)
131
        self.tokenizer.batch_decode(max_indices)
132

133
134
    def test_unk_support(self):
        t = self.tokenizer
135
        ids = t.prepare_seq2seq_batch(["||"]).to(torch_device).input_ids[0].tolist()
136
137
138
        expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
        self.assertEqual(expected, ids)

139
    def test_pad_not_split(self):
140
        input_ids_w_pad = self.tokenizer.prepare_seq2seq_batch(["I am a small frog <pad>"]).input_ids[0].tolist()
141
        expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0]  # pad
142
        self.assertListEqual(expected_w_pad, input_ids_w_pad)
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

    @slow
    def test_batch_generation_en_de(self):
        self._assert_generated_batch_equal_expected()

    def test_auto_config(self):
        config = AutoConfig.from_pretrained(self.model_name)
        self.assertIsInstance(config, MarianConfig)


class TestMarian_EN_FR(MarianIntegrationTest):
    src = "en"
    tgt = "fr"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
    ]
    expected_text = [
        "Je suis une petite grenouille.",
        "Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
    ]

    @slow
    def test_batch_generation_en_fr(self):
        self._assert_generated_batch_equal_expected()


class TestMarian_FR_EN(MarianIntegrationTest):
    src = "fr"
    tgt = "en"
    src_text = [
        "Donnez moi le micro.",
        "Tom et Mary étaient assis à une table.",  # Accents
    ]
    expected_text = [
        "Give me the microphone.",
        "Tom and Mary were sitting at a table.",
    ]

    @slow
    def test_batch_generation_fr_en(self):
        self._assert_generated_batch_equal_expected()


class TestMarian_RU_FR(MarianIntegrationTest):
    src = "ru"
    tgt = "fr"
    src_text = ["Он показал мне рукопись своей новой пьесы."]
191
    expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."]
192

193
    @slow
194
195
196
197
198
199
200
    def test_batch_generation_ru_fr(self):
        self._assert_generated_batch_equal_expected()


class TestMarian_MT_EN(MarianIntegrationTest):
    src = "mt"
    tgt = "en"
201
202
    src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
    expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]
203

204
    @slow
205
206
207
208
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()


Sam Shleifer's avatar
Sam Shleifer committed
209
210
211
class TestMarian_en_zh(MarianIntegrationTest):
    src = "en"
    tgt = "zh"
212
213
214
215
216
217
218
219
    src_text = ["My name is Wolfgang and I live in Berlin"]
    expected_text = ["我叫沃尔夫冈 我住在柏林"]

    @slow
    def test_batch_generation_eng_zho(self):
        self._assert_generated_batch_equal_expected()


220
221
class TestMarian_en_ROMANCE(MarianIntegrationTest):
    """Multilingual on target side."""
222

223
224
225
226
227
228
229
230
231
232
233
234
    src = "en"
    tgt = "ROMANCE"
    src_text = [
        ">>fr<< Don't spend so much time watching TV.",
        ">>pt<< Your message has been sent.",
        ">>es<< He's two years older than me.",
    ]
    expected_text = [
        "Ne passez pas autant de temps à regarder la télé.",
        "A sua mensagem foi enviada.",
        "Es dos años más viejo que yo.",
    ]
235

236
237
    @slow
    def test_batch_generation_en_ROMANCE_multi(self):
238
239
        self._assert_generated_batch_equal_expected()

240
241
242
243
    def test_tokenizer_handles_empty(self):
        normalized = self.tokenizer.normalize("")
        self.assertIsInstance(normalized, str)
        with self.assertRaises(ValueError):
244
            self.tokenizer.prepare_seq2seq_batch([""])
245

246
    def test_pipeline(self):
247
248
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device)
249
250
251
        output = pipeline(self.src_text)
        self.assertEqual(self.expected_text, [x["translation_text"] for x in output])

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

@require_torch
class TestConversionUtils(unittest.TestCase):
    def test_renaming_multilingual(self):
        old_names = [
            "opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "opus-mt-cmn+cn-fi",  # no group
            "opus-mt-en-de",  # standard name
            "opus-mt-en-de",  # standard name
        ]
        expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names])

    def test_undoing_renaming(self):
        hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names]
        expected_opus_names = [
            "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "cmn+cn-fi",
            "en-de",  # standard name
            "en-de",
        ]
        self.assertListEqual(expected_opus_names, converted_opus_names)