test_modeling_tf_common.py 26 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
18
import os
thomwolf's avatar
thomwolf committed
19
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import tempfile
21
import unittest
22
from importlib import import_module
thomwolf's avatar
thomwolf committed
23

24
from transformers import is_tf_available, is_torch_available
25

Julien Chaumond's avatar
Julien Chaumond committed
26
from .utils import _tf_gpu_memory_limit, require_tf
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_tf_available():
thomwolf's avatar
thomwolf committed
30
    import tensorflow as tf
thomwolf's avatar
thomwolf committed
31
    import numpy as np
32

33
    from transformers import tf_top_k_top_p_filtering, TFAdaptiveEmbedding
34

Julien Chaumond's avatar
Julien Chaumond committed
35
36
37
38
39
40
41
42
43
44
45
46
47
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
                tf.config.experimental.set_virtual_device_configuration(
                    gpu, [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
                )
                logical_gpus = tf.config.experimental.list_logical_devices("GPU")
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
48

49

thomwolf's avatar
thomwolf committed
50
51
52
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
53
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
54
55
56
57
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


58
59
@require_tf
class TFModelTesterMixin:
60

61
62
    model_tester = None
    all_model_classes = ()
63
    all_generative_model_classes = ()
64
65
66
67
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    is_encoder_decoder = False
68

69
70
71
    def test_initialization(self):
        pass
        # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
72

73
74
75
76
77
78
79
        # configs_no_init = _config_zero_init(config)
        # for model_class in self.all_model_classes:
        #     model = model_class(config=configs_no_init)
        #     for name, param in model.named_parameters():
        #         if param.requires_grad:
        #             self.assertIn(param.data.mean().item(), [0.0, 1.0],
        #             msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
80

81
82
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
83

84
85
86
        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(inputs_dict)
87

88
            with tempfile.TemporaryDirectory() as tmpdirname:
89
90
91
92
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
                after_outputs = model(inputs_dict)

93
                self.assert_outputs_same(after_outputs, outputs)
94

95
96
97
98
99
100
101
102
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
103
            if module_member_name.endswith("MainLayer")
104
            for module_member in (getattr(module, module_member_name),)
105
106
107
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        )
        for main_layer_class in tf_main_layer_classes:
            main_layer = main_layer_class(config)
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
                model = tf.keras.models.load_model(
                    filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                )
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
        out_1 = after_outputs[0].numpy()
        out_2 = outputs[0].numpy()
131
        self.assertEqual(out_1.shape, out_2.shape)
132
133
134
135
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
136

137
138
139
    def test_pt_tf_model_equivalence(self):
        if not is_torch_available():
            return
thomwolf's avatar
thomwolf committed
140

141
142
        import torch
        import transformers
thomwolf's avatar
thomwolf committed
143

144
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
145

146
147
148
        for model_class in self.all_model_classes:
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beggining
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
149

150
            config.output_hidden_states = True
151

152
153
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
154

155
            # Check we can load pt model in tf and vice-versa with model => model functions
156

157
158
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
159

160
161
162
163
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
                (name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items()
164
            )
165
166
167
168
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

169
170
171
172
173
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
            tfo = tf_model(inputs_dict, training=False)
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
174

175
176
177
178
179
180
181
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
182

183
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
184
185
186
187
188
189
190
            # Debug info (remove when fixed)
            if max_diff >= 2e-2:
                print("===")
                print(model_class)
                print(config)
                print(inputs_dict)
                print(pt_inputs_dict)
191
192
193
            self.assertLessEqual(max_diff, 2e-2)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
194
            with tempfile.TemporaryDirectory() as tmpdirname:
195
196
197
198
199
200
201
202
203
204
205
206
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
                (name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items()
207
            )
208
209
210
211
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

212
213
214
215
216
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
            tfo = tf_model(inputs_dict)
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
217
218
219
220
221
222
223
224
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

225
226
227
228
229
230
231
232
233
            max_diff = np.amax(np.abs(tfo - pto))
            self.assertLessEqual(max_diff, 2e-2)

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        if self.is_encoder_decoder:
            input_ids = {
                "decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
234
                "inputs": tf.keras.Input(batch_shape=(2, 2000), name="inputs", dtype="int32"),
235
236
237
238
239
240
241
242
243
244
245
246
            }
        else:
            input_ids = tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32")
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
            # Prepare our model
            model = model_class(config)

            # Let's load it from the disk to be sure we can use pretrained weights
247
            with tempfile.TemporaryDirectory() as tmpdirname:
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
                outputs = model(inputs_dict)  # build the model
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids)
            hidden_states = outputs_dict[0]

            # Add a dense layer on top to test intetgration with other keras modules
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs_dict = model(inputs_dict)

            inputs_keywords = copy.deepcopy(inputs_dict)
270
            input_ids = inputs_keywords.pop("input_ids" if not self.is_encoder_decoder else "inputs", None,)
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
            outputs_keywords = model(input_ids, **inputs_keywords)

            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        decoder_seq_length = (
            self.model_tester.decoder_seq_length
            if hasattr(self.model_tester, "decoder_seq_length")
            else self.model_tester.seq_length
        )
        encoder_seq_length = (
            self.model_tester.encoder_seq_length
            if hasattr(self.model_tester, "encoder_seq_length")
            else self.model_tester.seq_length
        )
        decoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
        )
        encoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
        )

        for model_class in self.all_model_classes:
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(inputs_dict)
            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
310
            )
311
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
312

313
314
315
            if self.is_encoder_decoder:
                self.assertEqual(out_len % 2, 0)
                decoder_attentions = outputs[(out_len // 2) - 1]
316
317
                self.assertEqual(model.config.output_attentions, True)
                self.assertEqual(model.config.output_hidden_states, False)
318
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
319
                self.assertListEqual(
320
321
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
322
                )
thomwolf's avatar
thomwolf committed
323

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
            # Check attention is always last and order is fine
            config.output_attentions = True
            config.output_hidden_states = True
            model = model_class(config)
            outputs = model(inputs_dict)
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)

            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )
339

340
341
342
343
344
345
346
347
348
349
350
351
352
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config.output_hidden_states = True
            config.output_attentions = False
            model = model_class(config)
            outputs = model(inputs_dict)
            hidden_states = [t.numpy() for t in outputs[-1]]
            self.assertEqual(model.config.output_attentions, False)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
            self.assertListEqual(
353
                list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size],
354
            )
355

356
357
358
359
360
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
361
            assert isinstance(model.get_input_embeddings(), (tf.keras.layers.Layer, TFAdaptiveEmbedding))
362
363
364
365
366
367
368
369
            x = model.get_output_embeddings()
            assert x is None or isinstance(x, tf.keras.layers.Layer)

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
370
371
372
373
            first, second = (
                model(inputs_dict, training=False)[0],
                model(inputs_dict, training=False)[0],
            )
374
375
376
377
378
379
380
381
382
383
384
385
386
387
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

    def _get_embeds(self, wte, input_ids):
        # ^^ In our TF models, the input_embeddings can take slightly different forms,
        # so we try a few of them.
        # We used to fall back to just synthetically creating a dummy tensor of ones:
        try:
            x = wte(input_ids, mode="embedding")
        except Exception:
thomwolf's avatar
thomwolf committed
388
            try:
389
                x = wte([input_ids], mode="embedding")
390
            except Exception:
thomwolf's avatar
thomwolf committed
391
                try:
392
                    x = wte([input_ids, None, None, None], mode="embedding")
393
                except Exception:
394
                    if hasattr(self.model_tester, "embedding_size"):
395
                        x = tf.ones(input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32,)
396
                    else:
397
                        x = tf.ones(input_ids.shape + [self.model_tester.hidden_size], dtype=tf.dtypes.float32,)
398
399
400
401
402
403
404
405
        return x

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.is_encoder_decoder:
            input_ids = inputs_dict["input_ids"]
            del inputs_dict["input_ids"]
        else:
406
            encoder_input_ids = inputs_dict["inputs"]
407
            decoder_input_ids = inputs_dict["decoder_input_ids"]
408
            del inputs_dict["inputs"]
409
410
411
412
413
414
            del inputs_dict["decoder_input_ids"]

        for model_class in self.all_model_classes:
            model = model_class(config)

            wte = model.get_input_embeddings()
thomwolf's avatar
thomwolf committed
415
            if not self.is_encoder_decoder:
416
                inputs_dict["inputs_embeds"] = self._get_embeds(wte, input_ids)
thomwolf's avatar
thomwolf committed
417
            else:
418
                inputs_dict["inputs_embeds"] = self._get_embeds(wte, encoder_input_ids)
419
420
                inputs_dict["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids)

421
            model(inputs_dict)
422

423
424
425
    def test_lm_head_model_random_generate(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
426
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
427
428
429

        if self.is_encoder_decoder:
            config.output_past = True  # needed for Bart TODO: might have to update for other encoder-decoder models
430
431
432
433
434
435

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                with self.assertRaises(AssertionError):
436
                    model.generate(do_sample=True, max_length=5)
437
                # batch_size = 1
438
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
439
                # batch_size = 1, num_beams > 1
440
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=3))
441
442
            else:
                # batch_size = 1
443
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
444
                # batch_size = 1, num_beams > 1
445
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=3))
446
447
448
449
450
451
452
453
454

            with self.assertRaises(AssertionError):
                # generating multiple sequences when greedy no beam generation
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)
455
456

            # batch_size > 1, sample
457
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=3))
458
            # batch_size > 1, greedy
459
            self._check_generated_ids(model.generate(input_ids, do_sample=False))
460
461

            # batch_size > 1, num_beams > 1, sample
462
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=3, num_return_sequences=3,))
463
            # batch_size > 1, num_beams > 1, greedy
464
465
466
467
468
469
470
471
472
473
474
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=3, num_return_sequences=3))

            # check bad words tokens language generation
            bad_words_ids = [
                tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), -1).numpy().tolist(),
                tf.squeeze(ids_tensor((2, 1), self.model_tester.vocab_size), -1).numpy().tolist(),
            ]

            # sampling
            output_tokens = model.generate(
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=3
475
            )
476
477
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
478

479
480
481
482
483
484
485
486
            # beam search
            output_tokens = model.generate(
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=3, num_return_sequences=3
            )
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

    def _check_generated_ids(self, output_ids):
487
488
489
490
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

491
492
493
494
495
496
497
498
499
500
501
502
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
503

thomwolf's avatar
thomwolf committed
504
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
505
506
507
508
509
510
511
512
513
514
515
516
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

517
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
518
519

    return output
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614


@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]], dtype=tf.int32,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))), dtype=tf.int32,
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)