modeling_openai_test.py 8.88 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest
import json
import random

import torch

thomwolf's avatar
thomwolf committed
25
26
from pytorch_pretrained_bert import (OpenAIGPTConfig, OpenAIGPTModel,
                                     OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel)
thomwolf's avatar
thomwolf committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90


class OpenAIGPTModelTest(unittest.TestCase):
    class OpenAIGPTModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     is_training=True,
                     use_position_ids=True,
                     use_token_type_ids=True,
                     use_labels=True,
                     vocab_size=99,
                     n_special=1,
                     n_ctx=33,
                     n_embd=32,
                     n_layer=5,
                     n_head=4,
                     n_choices=3,
                     afn="gelu",
                     resid_pdrop=0.1,
                     attn_pdrop=0.1,
                     embd_pdrop=0.1,
                     type_sequence_label_size=2,
                     initializer_range=0.02,
                     num_labels=3,
                     scope=None):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_position_ids = use_position_ids
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.n_special = n_special
            self.n_ctx = n_ctx
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.n_choices = n_choices
            self.resid_pdrop = resid_pdrop
            self.attn_pdrop = attn_pdrop
            self.embd_pdrop = embd_pdrop
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.vocab_size)

            position_ids = None
            if self.use_position_ids:
                position_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_ctx)
                position_ids = position_ids + self.n_special + self.vocab_size

            token_type_ids = None
            if self.use_token_type_ids:
                total_voc = self.n_ctx + self.n_special + self.vocab_size
                token_type_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)

thomwolf's avatar
thomwolf committed
91
            mc_labels = None
thomwolf's avatar
thomwolf committed
92
            lm_labels = None
thomwolf's avatar
thomwolf committed
93
            mc_token_mask = None
thomwolf's avatar
thomwolf committed
94
            if self.use_labels:
thomwolf's avatar
thomwolf committed
95
                mc_labels = OpenAIGPTModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size)
thomwolf's avatar
thomwolf committed
96
                lm_labels = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
thomwolf's avatar
thomwolf committed
97
                mc_token_mask = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], 2).float()
thomwolf's avatar
thomwolf committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

            config = OpenAIGPTConfig(
                vocab_size_or_config_json_file=self.vocab_size,
                n_ctx=self.n_ctx,
                n_special=self.n_special,
                n_embd=self.n_embd,
                n_layer=self.n_layer,
                n_head=self.n_head,
                afn=self.afn,
                resid_pdrop=self.resid_pdrop,
                attn_pdrop=self.attn_pdrop,
                embd_pdrop=self.embd_pdrop,
                initializer_range=self.initializer_range)

            return (config, input_ids, token_type_ids, position_ids,
thomwolf's avatar
thomwolf committed
113
                    mc_labels, lm_labels, mc_token_mask)
thomwolf's avatar
thomwolf committed
114
115

        def create_openai_model(self, config, input_ids, token_type_ids, position_ids,
thomwolf's avatar
thomwolf committed
116
                                mc_labels, lm_labels, mc_token_mask):
thomwolf's avatar
thomwolf committed
117
118
119
120
121
122
123
124
125
126
127
128
129
            model = OpenAIGPTModel(config)
            hidden_states = model(input_ids, position_ids, token_type_ids)
            outputs = {
                "hidden_states": hidden_states,
            }
            return outputs

        def check_openai_model_output(self, result):
            self.parent.assertListEqual(
                list(result["hidden_states"].size()),
                [self.batch_size, self.n_choices, self.seq_length, self.n_embd])


thomwolf's avatar
thomwolf committed
130
        def create_openai_lm_head(self, config, input_ids, token_type_ids, position_ids,
thomwolf's avatar
thomwolf committed
131
                                       mc_labels, lm_labels, mc_token_mask):
thomwolf's avatar
thomwolf committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
            model = OpenAIGPTLMHeadModel(config)
            loss = model(input_ids, position_ids, token_type_ids, lm_labels)
            lm_logits = model(input_ids, position_ids, token_type_ids)
            outputs = {
                "loss": loss,
                "lm_logits": lm_logits,
            }
            return outputs

        def check_openai_lm_head_output(self, result):
            total_voc = self.n_ctx + self.n_special + self.vocab_size
            self.parent.assertListEqual(
                list(result["lm_logits"].size()),
                [self.batch_size, self.n_choices, self.seq_length, total_voc])

        def check_openai_lm_head_loss_output(self, result):
            self.parent.assertListEqual(
                list(result["loss"].size()),
                [])

thomwolf's avatar
thomwolf committed
152
        def create_openai_double_heads(self, config, input_ids, token_type_ids, position_ids,
thomwolf's avatar
thomwolf committed
153
                                       mc_labels, lm_labels, mc_token_mask):
thomwolf's avatar
thomwolf committed
154
            model = OpenAIGPTDoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
155
156
157
158
            loss = model(input_ids, mc_token_mask,
                         lm_labels=lm_labels, mc_labels=mc_labels,
                         token_type_ids=token_type_ids, position_ids=position_ids)
            lm_logits, mc_logits = model(input_ids, mc_token_mask, position_ids=position_ids, token_type_ids=token_type_ids)
thomwolf's avatar
thomwolf committed
159
160
161
            outputs = {
                "loss": loss,
                "lm_logits": lm_logits,
thomwolf's avatar
thomwolf committed
162
                "mc_logits": mc_logits,
thomwolf's avatar
thomwolf committed
163
164
165
166
167
168
169
170
171
            }
            return outputs

        def check_openai_double_heads_output(self, result):
            total_voc = self.n_ctx + self.n_special + self.vocab_size
            self.parent.assertListEqual(
                list(result["lm_logits"].size()),
                [self.batch_size, self.n_choices, self.seq_length, total_voc])
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
172
                list(result["mc_logits"].size()),
thomwolf's avatar
thomwolf committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
                [self.batch_size, self.n_choices])

        def check_openai_double_heads_loss_output(self, result):
            self.parent.assertListEqual(
                [list(l.size()) for l in result["loss"]],
                [[], []])

    def test_default(self):
        self.run_tester(OpenAIGPTModelTest.OpenAIGPTModelTester(self))

    def test_config_to_json_string(self):
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=99, n_embd=37)
        obj = json.loads(config.to_json_string())
        self.assertEqual(obj["vocab_size"], 99)
        self.assertEqual(obj["n_embd"], 37)

    def run_tester(self, tester):
        config_and_inputs = tester.prepare_config_and_inputs()
        output_result = tester.create_openai_model(*config_and_inputs)
        tester.check_openai_model_output(output_result)

thomwolf's avatar
thomwolf committed
194
195
196
197
        output_result = tester.create_openai_lm_head(*config_and_inputs)
        tester.check_openai_lm_head_output(output_result)
        tester.check_openai_lm_head_loss_output(output_result)

thomwolf's avatar
thomwolf committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        output_result = tester.create_openai_double_heads(*config_and_inputs)
        tester.check_openai_double_heads_output(output_result)
        tester.check_openai_double_heads_loss_output(output_result)

    @classmethod
    def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
        """Creates a random int32 tensor of the shape within the vocab size."""
        if rng is None:
            rng = random.Random()

        total_dims = 1
        for dim in shape:
            total_dims *= dim

        values = []
        for _ in range(total_dims):
            values.append(rng.randint(0, vocab_size - 1))

        return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()


if __name__ == "__main__":
    unittest.main()