modeling_openai_test.py 7.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest
import json
import random

import torch

from pytorch_pretrained_bert import (OpenAIGPTConfig, OpenAIGPTModel, OpenAIGPTDoubleHeadsModel)


class OpenAIGPTModelTest(unittest.TestCase):
    class OpenAIGPTModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     is_training=True,
                     use_position_ids=True,
                     use_token_type_ids=True,
                     use_labels=True,
                     vocab_size=99,
                     n_special=1,
                     n_ctx=33,
                     n_embd=32,
                     n_layer=5,
                     n_head=4,
                     n_choices=3,
                     afn="gelu",
                     resid_pdrop=0.1,
                     attn_pdrop=0.1,
                     embd_pdrop=0.1,
                     type_sequence_label_size=2,
                     initializer_range=0.02,
                     num_labels=3,
                     scope=None):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_position_ids = use_position_ids
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.n_special = n_special
            self.n_ctx = n_ctx
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.n_choices = n_choices
            self.resid_pdrop = resid_pdrop
            self.attn_pdrop = attn_pdrop
            self.embd_pdrop = embd_pdrop
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.vocab_size)

            position_ids = None
            if self.use_position_ids:
                position_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_ctx)
                position_ids = position_ids + self.n_special + self.vocab_size

            token_type_ids = None
            if self.use_token_type_ids:
                total_voc = self.n_ctx + self.n_special + self.vocab_size
                token_type_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)

            multiple_choice_labels = None
            lm_labels = None
            classification_token_mask = None
            if self.use_labels:
                multiple_choice_labels = OpenAIGPTModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size)
                lm_labels = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
                classification_token_mask = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], 2).float()

            config = OpenAIGPTConfig(
                vocab_size_or_config_json_file=self.vocab_size,
                n_ctx=self.n_ctx,
                n_special=self.n_special,
                n_embd=self.n_embd,
                n_layer=self.n_layer,
                n_head=self.n_head,
                afn=self.afn,
                resid_pdrop=self.resid_pdrop,
                attn_pdrop=self.attn_pdrop,
                embd_pdrop=self.embd_pdrop,
                initializer_range=self.initializer_range)

            return (config, input_ids, token_type_ids, position_ids,
                    multiple_choice_labels, lm_labels, classification_token_mask)

        def create_openai_model(self, config, input_ids, token_type_ids, position_ids,
                                multiple_choice_labels, lm_labels, classification_token_mask):
            model = OpenAIGPTModel(config)
            hidden_states = model(input_ids, position_ids, token_type_ids)
            outputs = {
                "hidden_states": hidden_states,
            }
            return outputs

        def check_openai_model_output(self, result):
            self.parent.assertListEqual(
                list(result["hidden_states"].size()),
                [self.batch_size, self.n_choices, self.seq_length, self.n_embd])


        def create_openai_double_heads(self, config, input_ids, token_type_ids, position_ids,
                                       multiple_choice_labels, lm_labels, classification_token_mask):
            model = OpenAIGPTDoubleHeadsModel(config)
            loss = model(input_ids, classification_token_mask, position_ids,
                         token_type_ids, lm_labels, multiple_choice_labels)
            lm_logits, multiple_choice_logits = model(input_ids, classification_token_mask, position_ids, token_type_ids)
            outputs = {
                "loss": loss,
                "lm_logits": lm_logits,
                "multiple_choice_logits": multiple_choice_logits,
            }
            return outputs

        def check_openai_double_heads_output(self, result):
            total_voc = self.n_ctx + self.n_special + self.vocab_size
            self.parent.assertListEqual(
                list(result["lm_logits"].size()),
                [self.batch_size, self.n_choices, self.seq_length, total_voc])
            self.parent.assertListEqual(
                list(result["multiple_choice_logits"].size()),
                [self.batch_size, self.n_choices])

        def check_openai_double_heads_loss_output(self, result):
            self.parent.assertListEqual(
                [list(l.size()) for l in result["loss"]],
                [[], []])

    def test_default(self):
        self.run_tester(OpenAIGPTModelTest.OpenAIGPTModelTester(self))

    def test_config_to_json_string(self):
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=99, n_embd=37)
        obj = json.loads(config.to_json_string())
        self.assertEqual(obj["vocab_size"], 99)
        self.assertEqual(obj["n_embd"], 37)

    def run_tester(self, tester):
        config_and_inputs = tester.prepare_config_and_inputs()
        output_result = tester.create_openai_model(*config_and_inputs)
        tester.check_openai_model_output(output_result)

        output_result = tester.create_openai_double_heads(*config_and_inputs)
        tester.check_openai_double_heads_output(output_result)
        tester.check_openai_double_heads_loss_output(output_result)

    @classmethod
    def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
        """Creates a random int32 tensor of the shape within the vocab size."""
        if rng is None:
            rng = random.Random()

        total_dims = 1
        for dim in shape:
            total_dims *= dim

        values = []
        for _ in range(total_dims):
            values.append(rng.randint(0, vocab_size - 1))

        return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()


if __name__ == "__main__":
    unittest.main()