test_modeling_gpt2.py 16.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
    import torch
28

29
    from transformers import (
30
        GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
31
        GPT2Config,
32
        GPT2DoubleHeadsModel,
33
34
        GPT2LMHeadModel,
        GPT2Model,
35
36
    )

37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class GPT2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
87
88
89
90
        self.scope = None
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1

91
    def prepare_config_and_inputs(self, gradient_checkpointing=False):
92
93
94
95
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
96
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = GPT2Config(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            n_ctx=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
126
            # initializer_range=self.initializer_range,
127
128
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
Sylvain Gugger's avatar
Sylvain Gugger committed
129
            return_dict=True,
130
            gradient_checkpointing=gradient_checkpointing,
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

176
177
178
179
180
    def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
181
182
183
        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
184

Stas Bekman's avatar
Stas Bekman committed
185
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
186
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)
187
188
189
190
191
192
193

    def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
194
195
196
197
198
199
200
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
201
        output, past = outputs.to_tuple()
202
203
204
205
206
207
208
209
210

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
211
212
        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"]
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_gpt2_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
235
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
236
237
238
239
240
241
242
243
244
245
246
247

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
Lysandre's avatar
Lysandre committed
248
249
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
250
251
252
        )

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
253
254
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"]
255
256
257
258
259
260
261
262
263
264
265
266
267
268

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2LMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
269
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
270
271
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
272

273
274
275
276
277
278
279
280
281
    def create_and_check_forward_and_backwards(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2LMHeadModel(config)
        model.to(torch_device)

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    def create_and_check_double_lm_head_model(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = GPT2DoubleHeadsModel(config)
        model.to(torch_device)
        model.eval()

        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
            "labels": multiple_choice_inputs_ids,
        }

Sylvain Gugger's avatar
Sylvain Gugger committed
301
        result = model(**inputs)
302
        self.parent.assertEqual(result.loss.shape, ())
Stas Bekman's avatar
Stas Bekman committed
303
        self.parent.assertEqual(
304
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
305
        )
Stas Bekman's avatar
Stas Bekman committed
306
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


332
@require_torch
333
class GPT2ModelTest(ModelTesterMixin, unittest.TestCase):
334

thomwolf's avatar
thomwolf committed
335
    all_model_classes = (GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
336
    all_generative_model_classes = (
337
        (GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
338
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
339
    test_missing_keys = False
340
341

    def setUp(self):
342
        self.model_tester = GPT2ModelTester(self)
343
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
344
345

    def test_config(self):
346
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
347

348
349
350
    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
351

352
353
354
355
356
357
358
359
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

360
361
362
363
364
365
366
    def test_gpt2_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_gpt2_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
367

368
369
370
371
    def test_gpt2_gradient_checkpointing(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(gradient_checkpointing=True)
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs)

372
    @slow
373
    def test_model_from_pretrained(self):
374
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
375
            model = GPT2Model.from_pretrained(model_name)
376
            self.assertIsNotNone(model)
377
378


379
@require_torch
380
381
382
class GPT2ModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_gpt2(self):
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        for checkpointing in [True, False]:
            model = GPT2LMHeadModel.from_pretrained("gpt2", gradient_checkpointing=checkpointing)
            model.to(torch_device)
            input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device)  # The dog
            expected_output_ids = [
                464,
                3290,
                373,
                1043,
                287,
                257,
                2214,
                1474,
                262,
                16246,
                286,
                2688,
                290,
                2688,
                27262,
                13,
                198,
                198,
                464,
                3290,
            ]  # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
            output_ids = model.generate(input_ids, do_sample=False)
            self.assertListEqual(output_ids[0].tolist(), expected_output_ids)
411
412
413
414

    @slow
    def test_lm_generate_distilgpt2(self):
        model = GPT2LMHeadModel.from_pretrained("distilgpt2")
415
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
416
        input_ids = torch.tensor([[464, 1893]], dtype=torch.long, device=torch_device)  # The president
417
418
        expected_output_ids = [
            464,
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
            1893,
            286,
            262,
            1578,
            1829,
            11,
            290,
            262,
            1893,
            286,
            262,
            1578,
            7526,
            11,
            423,
            587,
435
436
            287,
            262,
437
438
            2635,
        ]  # The president of the United States, and the president of the United Kingdom, have been in the White
439

440
        output_ids = model.generate(input_ids, do_sample=False)
441
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)