test_modeling_gpt2.py 14.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
    import torch
28
29
30
    from transformers import (
        GPT2Config,
        GPT2Model,
31
        GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
32
33
34
35
        GPT2LMHeadModel,
        GPT2DoubleHeadsModel,
    )

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
class GPT2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0, 1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = GPT2Config(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            n_ctx=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
125
            # initializer_range=self.initializer_range,
126
127
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
Sylvain Gugger's avatar
Sylvain Gugger committed
128
            return_dict=True,
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
152
        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
153

Stas Bekman's avatar
Stas Bekman committed
154
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
155
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)
156
157
158
159
160
161
162

    def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
163
164
165
166
167
168
169
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
170
        output, past = outputs.to_tuple()
171
172
173
174
175
176
177
178
179

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
180
181
        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"]
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_gpt2_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
204
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1,
        )

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
221
222
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"]
223
224
225
226
227
228
229
230
231
232
233
234
235
236

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2LMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
237
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
238
239
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

    def create_and_check_double_lm_head_model(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = GPT2DoubleHeadsModel(config)
        model.to(torch_device)
        model.eval()

        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
            "labels": multiple_choice_inputs_ids,
        }

Sylvain Gugger's avatar
Sylvain Gugger committed
260
        result = model(**inputs)
Stas Bekman's avatar
Stas Bekman committed
261
262
263
        self.parent.assertEqual(result.lm_loss.shape, ())
        self.parent.assertEqual(
            result.lm_logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
264
        )
Stas Bekman's avatar
Stas Bekman committed
265
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


291
@require_torch
292
class GPT2ModelTest(ModelTesterMixin, unittest.TestCase):
293

thomwolf's avatar
thomwolf committed
294
    all_model_classes = (GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
295
296
297
    all_generative_model_classes = (
        (GPT2LMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
298
    test_missing_keys = False
299
300

    def setUp(self):
301
        self.model_tester = GPT2ModelTester(self)
302
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
303
304

    def test_config(self):
305
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
306

307
308
309
    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
310

311
312
313
314
315
316
317
318
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

319
320
321
322
323
324
325
    def test_gpt2_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_gpt2_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
326

327
    @slow
328
    def test_model_from_pretrained(self):
329
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
330
            model = GPT2Model.from_pretrained(model_name)
331
            self.assertIsNotNone(model)
332
333


334
@require_torch
335
336
337
338
class GPT2ModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_gpt2(self):
        model = GPT2LMHeadModel.from_pretrained("gpt2")
339
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
340
        input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device)  # The dog
341
342
343
        expected_output_ids = [
            464,
            3290,
patrickvonplaten's avatar
patrickvonplaten committed
344
345
346
347
348
349
350
351
352
353
            373,
            1043,
            287,
            257,
            2214,
            1474,
            262,
            16246,
            286,
            2688,
354
            290,
patrickvonplaten's avatar
patrickvonplaten committed
355
356
357
358
359
360
            2688,
            27262,
            13,
            198,
            198,
            464,
361
            3290,
patrickvonplaten's avatar
patrickvonplaten committed
362
363
        ]  # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
        output_ids = model.generate(input_ids, do_sample=False)
364
365
366
367
368
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)

    @slow
    def test_lm_generate_distilgpt2(self):
        model = GPT2LMHeadModel.from_pretrained("distilgpt2")
369
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
370
        input_ids = torch.tensor([[464, 1893]], dtype=torch.long, device=torch_device)  # The president
371
372
        expected_output_ids = [
            464,
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
            1893,
            286,
            262,
            1578,
            1829,
            11,
            290,
            262,
            1893,
            286,
            262,
            1578,
            7526,
            11,
            423,
            587,
389
390
            287,
            262,
391
392
            2635,
        ]  # The president of the United States, and the president of the United Kingdom, have been in the White
393

394
        output_ids = model.generate(input_ids, do_sample=False)
395
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)