testing_utils.py 81.9 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

NielsRogge's avatar
NielsRogge committed
15
import collections
16
import contextlib
17
import doctest
18
import functools
19
import importlib
20
import inspect
21
import logging
22
import multiprocessing
23
import os
24
import re
25
import shlex
26
import shutil
Zachary Mueller's avatar
Zachary Mueller committed
27
import subprocess
28
import sys
29
import tempfile
30
import time
Aymeric Augustin's avatar
Aymeric Augustin committed
31
import unittest
32
from collections import defaultdict
33
from collections.abc import Mapping
34
from functools import wraps
35
from io import StringIO
36
from pathlib import Path
37
from typing import Callable, Dict, Iterable, Iterator, List, Optional, Union
38
from unittest import mock
39
from unittest.mock import patch
40

41
import urllib3
42

43
44
from transformers import logging as transformers_logging

45
from .integrations import (
46
    is_clearml_available,
47
48
49
    is_optuna_available,
    is_ray_available,
    is_sigopt_available,
50
    is_tensorboard_available,
51
52
    is_wandb_available,
)
53
from .integrations.deepspeed import is_deepspeed_available
54
from .utils import (
55
    is_accelerate_available,
56
    is_apex_available,
57
    is_aqlm_available,
58
    is_auto_awq_available,
Marc Sun's avatar
Marc Sun committed
59
    is_auto_gptq_available,
60
    is_av_available,
61
    is_bitsandbytes_available,
NielsRogge's avatar
NielsRogge committed
62
    is_bs4_available,
NielsRogge's avatar
NielsRogge committed
63
    is_cv2_available,
64
    is_cython_available,
65
    is_decord_available,
66
    is_detectron2_available,
Susnato Dhar's avatar
Susnato Dhar committed
67
    is_essentia_available,
68
    is_faiss_available,
69
    is_flash_attn_2_available,
70
    is_flax_available,
71
    is_fsdp_available,
72
    is_ftfy_available,
73
    is_g2p_en_available,
74
    is_galore_torch_available,
75
    is_ipex_available,
76
    is_jieba_available,
77
    is_jinja_available,
78
    is_jumanpp_available,
Matt's avatar
Matt committed
79
    is_keras_nlp_available,
NielsRogge's avatar
NielsRogge committed
80
    is_levenshtein_available,
81
    is_librosa_available,
82
    is_natten_available,
NielsRogge's avatar
NielsRogge committed
83
    is_nltk_available,
84
    is_onnx_available,
85
    is_optimum_available,
86
    is_pandas_available,
87
    is_peft_available,
88
    is_phonemizer_available,
Susnato Dhar's avatar
Susnato Dhar committed
89
    is_pretty_midi_available,
90
    is_pyctcdecode_available,
91
    is_pytesseract_available,
92
    is_pytest_available,
93
    is_pytorch_quantization_available,
94
    is_quanto_available,
yujun's avatar
yujun committed
95
    is_rjieba_available,
96
    is_sacremoses_available,
97
    is_safetensors_available,
98
    is_scipy_available,
99
    is_sentencepiece_available,
100
    is_seqio_available,
Patrick von Platen's avatar
Patrick von Platen committed
101
    is_soundfile_availble,
102
    is_spacy_available,
103
    is_sudachi_available,
104
    is_sudachi_projection_available,
Kamal Raj's avatar
Kamal Raj committed
105
    is_tensorflow_probability_available,
106
    is_tensorflow_text_available,
107
    is_tf2onnx_available,
108
    is_tf_available,
NielsRogge's avatar
NielsRogge committed
109
    is_timm_available,
110
111
    is_tokenizers_available,
    is_torch_available,
112
    is_torch_bf16_available_on_device,
113
114
    is_torch_bf16_cpu_available,
    is_torch_bf16_gpu_available,
115
    is_torch_fp16_available_on_device,
116
    is_torch_neuroncore_available,
117
    is_torch_npu_available,
118
    is_torch_sdpa_available,
119
    is_torch_tensorrt_fx_available,
120
    is_torch_tf32_available,
121
    is_torch_xla_available,
122
    is_torch_xpu_available,
Suraj Patil's avatar
Suraj Patil committed
123
    is_torchaudio_available,
124
    is_torchdynamo_available,
NielsRogge's avatar
NielsRogge committed
125
    is_torchvision_available,
126
    is_vision_available,
127
    strtobool,
128
)
129
130


131
132
133
134
if is_accelerate_available():
    from accelerate.state import AcceleratorState, PartialState


135
136
137
138
139
140
141
142
143
144
145
if is_pytest_available():
    from _pytest.doctest import (
        Module,
        _get_checker,
        _get_continue_on_failure,
        _get_runner,
        _is_mocked,
        _patch_unwrap_mock_aware,
        get_optionflags,
    )
    from _pytest.outcomes import skip
146
    from _pytest.pathlib import import_path
147
148
149
150
151
152
    from pytest import DoctestItem
else:
    Module = object
    DoctestItem = object


Julien Chaumond's avatar
Julien Chaumond committed
153
SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy"
154
DUMMY_UNKNOWN_IDENTIFIER = "julien-c/dummy-unknown"
155
DUMMY_DIFF_TOKENIZER_IDENTIFIER = "julien-c/dummy-diff-tokenizer"
Julien Chaumond's avatar
Julien Chaumond committed
156
# Used to test Auto{Config, Model, Tokenizer} model_type detection.
Julien Chaumond's avatar
Julien Chaumond committed
157

Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
# Used to test the hub
USER = "__DUMMY_TRANSFORMERS_USER__"
160
161
162
163
ENDPOINT_STAGING = "https://hub-ci.huggingface.co"

# Not critical, only usable on the sandboxed CI instance.
TOKEN = "hf_94wBhPGp6KrrTH3KDchhKpRxZwd6dmHWLL"
Sylvain Gugger's avatar
Sylvain Gugger committed
164

Julien Chaumond's avatar
Julien Chaumond committed
165

166
def parse_flag_from_env(key, default=False):
167
    try:
168
169
170
171
172
173
174
175
176
177
        value = os.environ[key]
    except KeyError:
        # KEY isn't set, default to `default`.
        _value = default
    else:
        # KEY is set, convert it to True or False.
        try:
            _value = strtobool(value)
        except ValueError:
            # More values are supported, but let's keep the message simple.
178
            raise ValueError(f"If set, {key} must be yes or no.")
179
180
    return _value

181

Julien Chaumond's avatar
Julien Chaumond committed
182
183
184
185
186
187
188
189
190
def parse_int_from_env(key, default=None):
    try:
        value = os.environ[key]
    except KeyError:
        _value = default
    else:
        try:
            _value = int(value)
        except ValueError:
191
            raise ValueError(f"If set, {key} must be a int.")
Julien Chaumond's avatar
Julien Chaumond committed
192
193
194
    return _value


195
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
196
197
_run_pt_tf_cross_tests = parse_flag_from_env("RUN_PT_TF_CROSS_TESTS", default=True)
_run_pt_flax_cross_tests = parse_flag_from_env("RUN_PT_FLAX_CROSS_TESTS", default=True)
198
_run_custom_tokenizers = parse_flag_from_env("RUN_CUSTOM_TOKENIZERS", default=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
199
_run_staging = parse_flag_from_env("HUGGINGFACE_CO_STAGING", default=False)
Julien Chaumond's avatar
Julien Chaumond committed
200
_tf_gpu_memory_limit = parse_int_from_env("TF_GPU_MEMORY_LIMIT", default=None)
201
_run_pipeline_tests = parse_flag_from_env("RUN_PIPELINE_TESTS", default=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
202
_run_tool_tests = parse_flag_from_env("RUN_TOOL_TESTS", default=False)
203
_run_third_party_device_tests = parse_flag_from_env("RUN_THIRD_PARTY_DEVICE_TESTS", default=False)
204
205


206
207
208
209
210
211
212
213
def is_pt_tf_cross_test(test_case):
    """
    Decorator marking a test as a test that control interactions between PyTorch and TensorFlow.

    PT+TF tests are skipped by default and we can run only them by setting RUN_PT_TF_CROSS_TESTS environment variable
    to a truthy value and selecting the is_pt_tf_cross_test pytest mark.

    """
214
    if not _run_pt_tf_cross_tests or not is_torch_available() or not is_tf_available():
215
216
217
218
219
220
221
222
223
224
        return unittest.skip("test is PT+TF test")(test_case)
    else:
        try:
            import pytest  # We don't need a hard dependency on pytest in the main library
        except ImportError:
            return test_case
        else:
            return pytest.mark.is_pt_tf_cross_test()(test_case)


225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def is_pt_flax_cross_test(test_case):
    """
    Decorator marking a test as a test that control interactions between PyTorch and Flax

    PT+FLAX tests are skipped by default and we can run only them by setting RUN_PT_FLAX_CROSS_TESTS environment
    variable to a truthy value and selecting the is_pt_flax_cross_test pytest mark.

    """
    if not _run_pt_flax_cross_tests or not is_torch_available() or not is_flax_available():
        return unittest.skip("test is PT+FLAX test")(test_case)
    else:
        try:
            import pytest  # We don't need a hard dependency on pytest in the main library
        except ImportError:
            return test_case
        else:
            return pytest.mark.is_pt_flax_cross_test()(test_case)


Sylvain Gugger's avatar
Sylvain Gugger committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
def is_staging_test(test_case):
    """
    Decorator marking a test as a staging test.

    Those tests will run using the staging environment of huggingface.co instead of the real model hub.
    """
    if not _run_staging:
        return unittest.skip("test is staging test")(test_case)
    else:
        try:
            import pytest  # We don't need a hard dependency on pytest in the main library
        except ImportError:
            return test_case
        else:
            return pytest.mark.is_staging_test()(test_case)


261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def is_pipeline_test(test_case):
    """
    Decorator marking a test as a pipeline test. If RUN_PIPELINE_TESTS is set to a falsy value, those tests will be
    skipped.
    """
    if not _run_pipeline_tests:
        return unittest.skip("test is pipeline test")(test_case)
    else:
        try:
            import pytest  # We don't need a hard dependency on pytest in the main library
        except ImportError:
            return test_case
        else:
            return pytest.mark.is_pipeline_test()(test_case)


Sylvain Gugger's avatar
Sylvain Gugger committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
def is_tool_test(test_case):
    """
    Decorator marking a test as a tool test. If RUN_TOOL_TESTS is set to a falsy value, those tests will be skipped.
    """
    if not _run_tool_tests:
        return unittest.skip("test is a tool test")(test_case)
    else:
        try:
            import pytest  # We don't need a hard dependency on pytest in the main library
        except ImportError:
            return test_case
        else:
            return pytest.mark.is_tool_test()(test_case)


292
293
294
295
def slow(test_case):
    """
    Decorator marking a test as slow.

Sylvain Gugger's avatar
Sylvain Gugger committed
296
    Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
297
298

    """
299
    return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
300
301


Lysandre Debut's avatar
Lysandre Debut committed
302
303
304
305
306
307
308
309
310
311
312
def tooslow(test_case):
    """
    Decorator marking a test as too slow.

    Slow tests are skipped while they're in the process of being fixed. No test should stay tagged as "tooslow" as
    these will not be tested by the CI.

    """
    return unittest.skip("test is too slow")(test_case)


313
314
315
316
def custom_tokenizers(test_case):
    """
    Decorator marking a test for a custom tokenizer.

Sylvain Gugger's avatar
Sylvain Gugger committed
317
318
    Custom tokenizers require additional dependencies, and are skipped by default. Set the RUN_CUSTOM_TOKENIZERS
    environment variable to a truthy value to run them.
319
    """
320
    return unittest.skipUnless(_run_custom_tokenizers, "test of custom tokenizers")(test_case)
321
322


NielsRogge's avatar
NielsRogge committed
323
324
325
326
327
328
329
def require_bs4(test_case):
    """
    Decorator marking a test that requires BeautifulSoup4. These tests are skipped when BeautifulSoup4 isn't installed.
    """
    return unittest.skipUnless(is_bs4_available(), "test requires BeautifulSoup4")(test_case)


330
331
332
333
334
335
336
337
def require_galore_torch(test_case):
    """
    Decorator marking a test that requires GaLore. These tests are skipped when GaLore isn't installed.
    https://github.com/jiaweizzhao/GaLore
    """
    return unittest.skipUnless(is_galore_torch_available(), "test requires GaLore")(test_case)


NielsRogge's avatar
NielsRogge committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
def require_cv2(test_case):
    """
    Decorator marking a test that requires OpenCV.

    These tests are skipped when OpenCV isn't installed.

    """
    return unittest.skipUnless(is_cv2_available(), "test requires OpenCV")(test_case)


def require_levenshtein(test_case):
    """
    Decorator marking a test that requires Levenshtein.

    These tests are skipped when Levenshtein isn't installed.

    """
    return unittest.skipUnless(is_levenshtein_available(), "test requires Levenshtein")(test_case)


def require_nltk(test_case):
    """
    Decorator marking a test that requires NLTK.

    These tests are skipped when NLTK isn't installed.

    """
    return unittest.skipUnless(is_nltk_available(), "test requires NLTK")(test_case)


368
369
370
371
372
373
374
def require_accelerate(test_case):
    """
    Decorator marking a test that requires accelerate. These tests are skipped when accelerate isn't installed.
    """
    return unittest.skipUnless(is_accelerate_available(), "test requires accelerate")(test_case)


375
376
377
378
379
380
381
382
383
def require_fsdp(test_case, min_version: str = "1.12.0"):
    """
    Decorator marking a test that requires fsdp. These tests are skipped when fsdp isn't installed.
    """
    return unittest.skipUnless(is_fsdp_available(min_version), f"test requires torch version >= {min_version}")(
        test_case
    )


384
385
386
387
388
389
390
def require_g2p_en(test_case):
    """
    Decorator marking a test that requires g2p_en. These tests are skipped when SentencePiece isn't installed.
    """
    return unittest.skipUnless(is_g2p_en_available(), "test requires g2p_en")(test_case)


391
392
393
394
395
396
397
def require_safetensors(test_case):
    """
    Decorator marking a test that requires safetensors. These tests are skipped when safetensors isn't installed.
    """
    return unittest.skipUnless(is_safetensors_available(), "test requires safetensors")(test_case)


yujun's avatar
yujun committed
398
399
400
401
def require_rjieba(test_case):
    """
    Decorator marking a test that requires rjieba. These tests are skipped when rjieba isn't installed.
    """
402
    return unittest.skipUnless(is_rjieba_available(), "test requires rjieba")(test_case)
yujun's avatar
yujun committed
403
404


405
406
407
408
409
410
411
def require_jieba(test_case):
    """
    Decorator marking a test that requires jieba. These tests are skipped when jieba isn't installed.
    """
    return unittest.skipUnless(is_jieba_available(), "test requires jieba")(test_case)


412
413
414
415
416
417
418
def require_jinja(test_case):
    """
    Decorator marking a test that requires jinja. These tests are skipped when jinja isn't installed.
    """
    return unittest.skipUnless(is_jinja_available(), "test requires jinja")(test_case)


419
def require_tf2onnx(test_case):
420
    return unittest.skipUnless(is_tf2onnx_available(), "test requires tf2onnx")(test_case)
421
422


423
def require_onnx(test_case):
424
    return unittest.skipUnless(is_onnx_available(), "test requires ONNX")(test_case)
425
426


NielsRogge's avatar
NielsRogge committed
427
428
429
430
431
432
433
def require_timm(test_case):
    """
    Decorator marking a test that requires Timm.

    These tests are skipped when Timm isn't installed.

    """
434
    return unittest.skipUnless(is_timm_available(), "test requires Timm")(test_case)
NielsRogge's avatar
NielsRogge committed
435
436


437
438
439
440
441
442
443
444
445
446
def require_natten(test_case):
    """
    Decorator marking a test that requires NATTEN.

    These tests are skipped when NATTEN isn't installed.

    """
    return unittest.skipUnless(is_natten_available(), "test requires natten")(test_case)


447
448
449
450
451
452
453
def require_torch(test_case):
    """
    Decorator marking a test that requires PyTorch.

    These tests are skipped when PyTorch isn't installed.

    """
454
    return unittest.skipUnless(is_torch_available(), "test requires PyTorch")(test_case)
455
456


457
458
459
460
461
462
463
def require_flash_attn(test_case):
    """
    Decorator marking a test that requires Flash Attention.

    These tests are skipped when Flash Attention isn't installed.

    """
464
    return unittest.skipUnless(is_flash_attn_2_available(), "test requires Flash Attention")(test_case)
465
466


467
468
469
470
471
472
473
474
475
def require_torch_sdpa(test_case):
    """
    Decorator marking a test that requires PyTorch's SDPA.

    These tests are skipped when requirements are not met (torch version).
    """
    return unittest.skipUnless(is_torch_sdpa_available(), "test requires PyTorch SDPA")(test_case)


476
477
478
479
def require_read_token(fn):
    """
    A decorator that loads the HF token for tests that require to load gated models.
    """
480
    token = os.getenv("HF_HUB_READ_TOKEN")
481
482
483

    @wraps(fn)
    def _inner(*args, **kwargs):
484
        with patch("huggingface_hub.utils._headers.get_token", return_value=token):
485
486
487
488
489
            return fn(*args, **kwargs)

    return _inner


490
491
492
493
494
495
496
497
def require_peft(test_case):
    """
    Decorator marking a test that requires PEFT.

    These tests are skipped when PEFT isn't installed.

    """
    return unittest.skipUnless(is_peft_available(), "test requires PEFT")(test_case)
498
499


NielsRogge's avatar
NielsRogge committed
500
501
502
503
504
505
506
507
508
509
def require_torchvision(test_case):
    """
    Decorator marking a test that requires Torchvision.

    These tests are skipped when Torchvision isn't installed.

    """
    return unittest.skipUnless(is_torchvision_available(), "test requires Torchvision")(test_case)


510
511
512
513
514
515
516
517
518
519
520
521
def require_torch_or_tf(test_case):
    """
    Decorator marking a test that requires PyTorch or TensorFlow.

    These tests are skipped when neither PyTorch not TensorFlow is installed.

    """
    return unittest.skipUnless(is_torch_available() or is_tf_available(), "test requires PyTorch or TensorFlow")(
        test_case
    )


522
523
524
525
def require_intel_extension_for_pytorch(test_case):
    """
    Decorator marking a test that requires Intel Extension for PyTorch.

526
527
    These tests are skipped when Intel Extension for PyTorch isn't installed or it does not match current PyTorch
    version.
528
529

    """
530
531
532
533
534
    return unittest.skipUnless(
        is_ipex_available(),
        "test requires Intel Extension for PyTorch to be installed and match current PyTorch version, see"
        " https://github.com/intel/intel-extension-for-pytorch",
    )(test_case)
535
536


Kamal Raj's avatar
Kamal Raj committed
537
538
539
540
541
542
543
def require_tensorflow_probability(test_case):
    """
    Decorator marking a test that requires TensorFlow probability.

    These tests are skipped when TensorFlow probability isn't installed.

    """
544
545
546
    return unittest.skipUnless(is_tensorflow_probability_available(), "test requires TensorFlow probability")(
        test_case
    )
Kamal Raj's avatar
Kamal Raj committed
547
548


Suraj Patil's avatar
Suraj Patil committed
549
550
def require_torchaudio(test_case):
    """
551
    Decorator marking a test that requires torchaudio. These tests are skipped when torchaudio isn't installed.
Suraj Patil's avatar
Suraj Patil committed
552
    """
553
    return unittest.skipUnless(is_torchaudio_available(), "test requires torchaudio")(test_case)
554
555


556
557
def require_tf(test_case):
    """
558
    Decorator marking a test that requires TensorFlow. These tests are skipped when TensorFlow isn't installed.
559
    """
560
    return unittest.skipUnless(is_tf_available(), "test requires TensorFlow")(test_case)
561
562


563
564
def require_flax(test_case):
    """
565
    Decorator marking a test that requires JAX & Flax. These tests are skipped when one / both are not installed
566
    """
567
    return unittest.skipUnless(is_flax_available(), "test requires JAX & Flax")(test_case)
568
569


570
571
def require_sentencepiece(test_case):
    """
572
    Decorator marking a test that requires SentencePiece. These tests are skipped when SentencePiece isn't installed.
573
    """
574
    return unittest.skipUnless(is_sentencepiece_available(), "test requires SentencePiece")(test_case)
575
576


577
578
579
580
581
582
583
def require_sacremoses(test_case):
    """
    Decorator marking a test that requires Sacremoses. These tests are skipped when Sacremoses isn't installed.
    """
    return unittest.skipUnless(is_sacremoses_available(), "test requires Sacremoses")(test_case)


584
585
586
587
588
589
590
def require_seqio(test_case):
    """
    Decorator marking a test that requires SentencePiece. These tests are skipped when SentencePiece isn't installed.
    """
    return unittest.skipUnless(is_seqio_available(), "test requires Seqio")(test_case)


591
592
593
594
def require_scipy(test_case):
    """
    Decorator marking a test that requires Scipy. These tests are skipped when SentencePiece isn't installed.
    """
595
    return unittest.skipUnless(is_scipy_available(), "test requires Scipy")(test_case)
596
597


598
599
def require_tokenizers(test_case):
    """
600
    Decorator marking a test that requires 🤗 Tokenizers. These tests are skipped when 🤗 Tokenizers isn't installed.
601
    """
602
    return unittest.skipUnless(is_tokenizers_available(), "test requires tokenizers")(test_case)
603
604


605
606
607
608
609
610
611
612
def require_tensorflow_text(test_case):
    """
    Decorator marking a test that requires tensorflow_text. These tests are skipped when tensroflow_text isn't
    installed.
    """
    return unittest.skipUnless(is_tensorflow_text_available(), "test requires tensorflow_text")(test_case)


Matt's avatar
Matt committed
613
614
615
616
617
618
619
def require_keras_nlp(test_case):
    """
    Decorator marking a test that requires keras_nlp. These tests are skipped when keras_nlp isn't installed.
    """
    return unittest.skipUnless(is_keras_nlp_available(), "test requires keras_nlp")(test_case)


NielsRogge's avatar
NielsRogge committed
620
621
622
623
def require_pandas(test_case):
    """
    Decorator marking a test that requires pandas. These tests are skipped when pandas isn't installed.
    """
624
    return unittest.skipUnless(is_pandas_available(), "test requires pandas")(test_case)
NielsRogge's avatar
NielsRogge committed
625
626


627
628
629
630
def require_pytesseract(test_case):
    """
    Decorator marking a test that requires PyTesseract. These tests are skipped when PyTesseract isn't installed.
    """
631
    return unittest.skipUnless(is_pytesseract_available(), "test requires PyTesseract")(test_case)
632
633


634
635
636
637
638
def require_pytorch_quantization(test_case):
    """
    Decorator marking a test that requires PyTorch Quantization Toolkit. These tests are skipped when PyTorch
    Quantization Toolkit isn't installed.
    """
639
640
641
    return unittest.skipUnless(is_pytorch_quantization_available(), "test requires PyTorch Quantization Toolkit")(
        test_case
    )
642
643


644
def require_vision(test_case):
645
    """
646
647
648
    Decorator marking a test that requires the vision dependencies. These tests are skipped when torchaudio isn't
    installed.
    """
649
    return unittest.skipUnless(is_vision_available(), "test requires vision")(test_case)
650

651

652
653
654
655
def require_ftfy(test_case):
    """
    Decorator marking a test that requires ftfy. These tests are skipped when ftfy isn't installed.
    """
656
    return unittest.skipUnless(is_ftfy_available(), "test requires ftfy")(test_case)
657
658
659
660
661
662


def require_spacy(test_case):
    """
    Decorator marking a test that requires SpaCy. These tests are skipped when SpaCy isn't installed.
    """
663
    return unittest.skipUnless(is_spacy_available(), "test requires spacy")(test_case)
664
665


666
667
668
669
670
671
672
def require_decord(test_case):
    """
    Decorator marking a test that requires decord. These tests are skipped when decord isn't installed.
    """
    return unittest.skipUnless(is_decord_available(), "test requires decord")(test_case)


673
674
675
676
def require_torch_multi_gpu(test_case):
    """
    Decorator marking a test that requires a multi-GPU setup (in PyTorch). These tests are skipped on a machine without
    multiple GPUs.
677

678
    To run *only* the multi_gpu tests, assuming all test names contain multi_gpu: $ pytest -sv ./tests -k "multi_gpu"
679
    """
680
    if not is_torch_available():
681
682
683
684
        return unittest.skip("test requires PyTorch")(test_case)

    import torch

685
    return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(test_case)
686
687


688
689
690
691
692
693
694
695
696
697
698
699
700
701
def require_torch_multi_accelerator(test_case):
    """
    Decorator marking a test that requires a multi-accelerator (in PyTorch). These tests are skipped on a machine
    without multiple accelerators. To run *only* the multi_accelerator tests, assuming all test names contain
    multi_accelerator: $ pytest -sv ./tests -k "multi_accelerator"
    """
    if not is_torch_available():
        return unittest.skip("test requires PyTorch")(test_case)

    return unittest.skipUnless(backend_device_count(torch_device) > 1, "test requires multiple accelerators")(
        test_case
    )


702
def require_torch_non_multi_gpu(test_case):
703
704
705
    """
    Decorator marking a test that requires 0 or 1 GPU setup (in PyTorch).
    """
706
    if not is_torch_available():
707
708
709
710
        return unittest.skip("test requires PyTorch")(test_case)

    import torch

711
    return unittest.skipUnless(torch.cuda.device_count() < 2, "test requires 0 or 1 GPU")(test_case)
712
713


714
715
716
717
718
719
720
721
722
723
def require_torch_non_multi_accelerator(test_case):
    """
    Decorator marking a test that requires 0 or 1 accelerator setup (in PyTorch).
    """
    if not is_torch_available():
        return unittest.skip("test requires PyTorch")(test_case)

    return unittest.skipUnless(backend_device_count(torch_device) < 2, "test requires 0 or 1 accelerator")(test_case)


724
725
726
727
728
729
730
731
732
def require_torch_up_to_2_gpus(test_case):
    """
    Decorator marking a test that requires 0 or 1 or 2 GPU setup (in PyTorch).
    """
    if not is_torch_available():
        return unittest.skip("test requires PyTorch")(test_case)

    import torch

733
    return unittest.skipUnless(torch.cuda.device_count() < 3, "test requires 0 or 1 or 2 GPUs")(test_case)
734
735


736
737
738
739
740
741
742
743
744
745
746
def require_torch_up_to_2_accelerators(test_case):
    """
    Decorator marking a test that requires 0 or 1 or 2 accelerator setup (in PyTorch).
    """
    if not is_torch_available():
        return unittest.skip("test requires PyTorch")(test_case)

    return unittest.skipUnless(backend_device_count(torch_device) < 3, "test requires 0 or 1 or 2 accelerators")
    (test_case)


747
def require_torch_xla(test_case):
Lysandre Debut's avatar
Lysandre Debut committed
748
    """
749
    Decorator marking a test that requires TorchXLA (in PyTorch).
Lysandre Debut's avatar
Lysandre Debut committed
750
    """
751
    return unittest.skipUnless(is_torch_xla_available(), "test requires TorchXLA")(test_case)
Lysandre Debut's avatar
Lysandre Debut committed
752
753


754
755
756
757
758
759
760
761
762
def require_torch_neuroncore(test_case):
    """
    Decorator marking a test that requires NeuronCore (in PyTorch).
    """
    return unittest.skipUnless(is_torch_neuroncore_available(check_device=False), "test requires PyTorch NeuronCore")(
        test_case
    )


763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
def require_torch_npu(test_case):
    """
    Decorator marking a test that requires NPU (in PyTorch).
    """
    return unittest.skipUnless(is_torch_npu_available(), "test requires PyTorch NPU")(test_case)


def require_torch_multi_npu(test_case):
    """
    Decorator marking a test that requires a multi-NPU setup (in PyTorch). These tests are skipped on a machine without
    multiple NPUs.

    To run *only* the multi_npu tests, assuming all test names contain multi_npu: $ pytest -sv ./tests -k "multi_npu"
    """
    if not is_torch_npu_available():
        return unittest.skip("test requires PyTorch NPU")(test_case)

    return unittest.skipUnless(torch.npu.device_count() > 1, "test requires multiple NPUs")(test_case)


783
784
785
786
787
788
789
790
791
792
793
794
def require_torch_xpu(test_case):
    """
    Decorator marking a test that requires XPU and IPEX.

    These tests are skipped when Intel Extension for PyTorch isn't installed or it does not match current PyTorch
    version.
    """
    return unittest.skipUnless(is_torch_xpu_available(), "test requires IPEX and an XPU device")(test_case)


def require_torch_multi_xpu(test_case):
    """
795
    Decorator marking a test that requires a multi-XPU setup with IPEX and at least one XPU device. These tests are
796
797
798
799
800
    skipped on a machine without IPEX or multiple XPUs.

    To run *only* the multi_xpu tests, assuming all test names contain multi_xpu: $ pytest -sv ./tests -k "multi_xpu"
    """
    if not is_torch_xpu_available():
801
        return unittest.skip("test requires IPEX and at least one XPU device")(test_case)
802
803
804
805

    return unittest.skipUnless(torch.xpu.device_count() > 1, "test requires multiple XPUs")(test_case)


806
if is_torch_available():
Stas Bekman's avatar
Stas Bekman committed
807
808
809
    # Set env var CUDA_VISIBLE_DEVICES="" to force cpu-mode
    import torch

810
811
812
813
814
815
816
817
818
819
    if "TRANSFORMERS_TEST_BACKEND" in os.environ:
        backend = os.environ["TRANSFORMERS_TEST_BACKEND"]
        try:
            _ = importlib.import_module(backend)
        except ModuleNotFoundError as e:
            raise ModuleNotFoundError(
                f"Failed to import `TRANSFORMERS_TEST_BACKEND` '{backend}'! This should be the name of an installed module. The original error (look up to see its"
                f" traceback):\n{e}"
            ) from e

820
821
    if "TRANSFORMERS_TEST_DEVICE" in os.environ:
        torch_device = os.environ["TRANSFORMERS_TEST_DEVICE"]
822
823
824
825
826
827
828
829
830
831
832
833
834
        if torch_device == "cuda" and not torch.cuda.is_available():
            raise ValueError(
                f"TRANSFORMERS_TEST_DEVICE={torch_device}, but CUDA is unavailable. Please double-check your testing environment."
            )
        if torch_device == "xpu" and not is_torch_xpu_available():
            raise ValueError(
                f"TRANSFORMERS_TEST_DEVICE={torch_device}, but XPU is unavailable. Please double-check your testing environment."
            )
        if torch_device == "npu" and not is_torch_npu_available():
            raise ValueError(
                f"TRANSFORMERS_TEST_DEVICE={torch_device}, but NPU is unavailable. Please double-check your testing environment."
            )

835
836
837
838
839
840
841
842
        try:
            # try creating device to see if provided device is valid
            _ = torch.device(torch_device)
        except RuntimeError as e:
            raise RuntimeError(
                f"Unknown testing device specified by environment variable `TRANSFORMERS_TEST_DEVICE`: {torch_device}"
            ) from e
    elif torch.cuda.is_available():
843
844
845
        torch_device = "cuda"
    elif _run_third_party_device_tests and is_torch_npu_available():
        torch_device = "npu"
846
847
    elif _run_third_party_device_tests and is_torch_xpu_available():
        torch_device = "xpu"
848
849
    else:
        torch_device = "cpu"
850
851
else:
    torch_device = None
852

853
854
855
if is_tf_available():
    import tensorflow as tf

856
857
858
859
860
861
862
if is_flax_available():
    import jax

    jax_device = jax.default_backend()
else:
    jax_device = None

863

864
865
866
867
868
def require_torchdynamo(test_case):
    """Decorator marking a test that requires TorchDynamo"""
    return unittest.skipUnless(is_torchdynamo_available(), "test requires TorchDynamo")(test_case)


869
870
871
872
873
def require_torch_tensorrt_fx(test_case):
    """Decorator marking a test that requires Torch-TensorRT FX"""
    return unittest.skipUnless(is_torch_tensorrt_fx_available(), "test requires Torch-TensorRT FX")(test_case)


874
def require_torch_gpu(test_case):
Patrick von Platen's avatar
Patrick von Platen committed
875
    """Decorator marking a test that requires CUDA and PyTorch."""
876
    return unittest.skipUnless(torch_device == "cuda", "test requires CUDA")(test_case)
877
878


879
880
def require_torch_accelerator(test_case):
    """Decorator marking a test that requires an accessible accelerator and PyTorch."""
881
882
883
    return unittest.skipUnless(torch_device is not None and torch_device != "cpu", "test requires accelerator")(
        test_case
    )
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899


def require_torch_fp16(test_case):
    """Decorator marking a test that requires a device that supports fp16"""
    return unittest.skipUnless(
        is_torch_fp16_available_on_device(torch_device), "test requires device with fp16 support"
    )(test_case)


def require_torch_bf16(test_case):
    """Decorator marking a test that requires a device that supports bf16"""
    return unittest.skipUnless(
        is_torch_bf16_available_on_device(torch_device), "test requires device with bf16 support"
    )(test_case)


900
901
def require_torch_bf16_gpu(test_case):
    """Decorator marking a test that requires torch>=1.10, using Ampere GPU or newer arch with cuda>=11.0"""
902
    return unittest.skipUnless(
903
904
905
906
907
908
909
910
911
912
        is_torch_bf16_gpu_available(),
        "test requires torch>=1.10, using Ampere GPU or newer arch with cuda>=11.0",
    )(test_case)


def require_torch_bf16_cpu(test_case):
    """Decorator marking a test that requires torch>=1.10, using CPU."""
    return unittest.skipUnless(
        is_torch_bf16_cpu_available(),
        "test requires torch>=1.10, using CPU",
913
    )(test_case)
914
915
916
917


def require_torch_tf32(test_case):
    """Decorator marking a test that requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.7."""
918
919
920
    return unittest.skipUnless(
        is_torch_tf32_available(), "test requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.7"
    )(test_case)
921
922


923
924
def require_detectron2(test_case):
    """Decorator marking a test that requires detectron2."""
925
    return unittest.skipUnless(is_detectron2_available(), "test requires `detectron2`")(test_case)
926
927


Ola Piktus's avatar
Ola Piktus committed
928
929
def require_faiss(test_case):
    """Decorator marking a test that requires faiss."""
930
    return unittest.skipUnless(is_faiss_available(), "test requires `faiss`")(test_case)
Ola Piktus's avatar
Ola Piktus committed
931
932


933
934
935
936
937
938
939
def require_optuna(test_case):
    """
    Decorator marking a test that requires optuna.

    These tests are skipped when optuna isn't installed.

    """
940
    return unittest.skipUnless(is_optuna_available(), "test requires optuna")(test_case)
941
942
943
944
945
946
947
948
949


def require_ray(test_case):
    """
    Decorator marking a test that requires Ray/tune.

    These tests are skipped when Ray/tune isn't installed.

    """
950
    return unittest.skipUnless(is_ray_available(), "test requires Ray/tune")(test_case)
951
952


953
954
955
956
957
958
959
def require_sigopt(test_case):
    """
    Decorator marking a test that requires SigOpt.

    These tests are skipped when SigOpt isn't installed.

    """
960
    return unittest.skipUnless(is_sigopt_available(), "test requires SigOpt")(test_case)
961
962


963
964
965
966
967
968
969
def require_wandb(test_case):
    """
    Decorator marking a test that requires wandb.

    These tests are skipped when wandb isn't installed.

    """
970
    return unittest.skipUnless(is_wandb_available(), "test requires wandb")(test_case)
971
972


973
974
975
976
977
978
979
980
981
982
def require_clearml(test_case):
    """
    Decorator marking a test requires clearml.

    These tests are skipped when clearml isn't installed.

    """
    return unittest.skipUnless(is_clearml_available(), "test requires clearml")(test_case)


Patrick von Platen's avatar
Patrick von Platen committed
983
984
985
986
987
988
989
def require_soundfile(test_case):
    """
    Decorator marking a test that requires soundfile

    These tests are skipped when soundfile isn't installed.

    """
990
    return unittest.skipUnless(is_soundfile_availble(), "test requires soundfile")(test_case)
Patrick von Platen's avatar
Patrick von Platen committed
991
992


993
994
995
996
def require_deepspeed(test_case):
    """
    Decorator marking a test that requires deepspeed
    """
997
    return unittest.skipUnless(is_deepspeed_available(), "test requires deepspeed")(test_case)
998
999


1000
1001
1002
1003
def require_apex(test_case):
    """
    Decorator marking a test that requires apex
    """
1004
    return unittest.skipUnless(is_apex_available(), "test requires apex")(test_case)
1005
1006


1007
1008
1009
1010
1011
1012
1013
def require_aqlm(test_case):
    """
    Decorator marking a test that requires aqlm
    """
    return unittest.skipUnless(is_aqlm_available(), "test requires aqlm")(test_case)


1014
1015
1016
1017
1018
1019
1020
def require_av(test_case):
    """
    Decorator marking a test that requires av
    """
    return unittest.skipUnless(is_av_available(), "test requires av")(test_case)


1021
1022
def require_bitsandbytes(test_case):
    """
1023
    Decorator marking a test that requires the bitsandbytes library. Will be skipped when the library or its hard dependency torch is not installed.
1024
    """
1025
1026
1027
1028
1029
1030
1031
1032
1033
    if is_bitsandbytes_available() and is_torch_available():
        try:
            import pytest

            return pytest.mark.bitsandbytes(test_case)
        except ImportError:
            return test_case
    else:
        return unittest.skip("test requires bitsandbytes and torch")(test_case)
1034
1035


1036
1037
1038
1039
1040
1041
1042
def require_optimum(test_case):
    """
    Decorator for optimum dependency
    """
    return unittest.skipUnless(is_optimum_available(), "test requires optimum")(test_case)


1043
1044
1045
1046
1047
1048
1049
def require_tensorboard(test_case):
    """
    Decorator for `tensorboard` dependency
    """
    return unittest.skipUnless(is_tensorboard_available(), "test requires tensorboard")


Marc Sun's avatar
Marc Sun committed
1050
1051
1052
1053
1054
1055
1056
def require_auto_gptq(test_case):
    """
    Decorator for auto_gptq dependency
    """
    return unittest.skipUnless(is_auto_gptq_available(), "test requires auto-gptq")(test_case)


1057
1058
1059
1060
1061
1062
1063
def require_auto_awq(test_case):
    """
    Decorator for auto_awq dependency
    """
    return unittest.skipUnless(is_auto_awq_available(), "test requires autoawq")(test_case)


1064
1065
1066
1067
1068
1069
1070
def require_quanto(test_case):
    """
    Decorator for quanto dependency
    """
    return unittest.skipUnless(is_quanto_available(), "test requires quanto")(test_case)


1071
1072
1073
1074
def require_phonemizer(test_case):
    """
    Decorator marking a test that requires phonemizer
    """
1075
    return unittest.skipUnless(is_phonemizer_available(), "test requires phonemizer")(test_case)
1076
1077


1078
1079
1080
1081
def require_pyctcdecode(test_case):
    """
    Decorator marking a test that requires pyctcdecode
    """
1082
    return unittest.skipUnless(is_pyctcdecode_available(), "test requires pyctcdecode")(test_case)
1083
1084
1085
1086
1087
1088


def require_librosa(test_case):
    """
    Decorator marking a test that requires librosa
    """
1089
    return unittest.skipUnless(is_librosa_available(), "test requires librosa")(test_case)
1090
1091


Susnato Dhar's avatar
Susnato Dhar committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
def require_essentia(test_case):
    """
    Decorator marking a test that requires essentia
    """
    return unittest.skipUnless(is_essentia_available(), "test requires essentia")(test_case)


def require_pretty_midi(test_case):
    """
    Decorator marking a test that requires pretty_midi
    """
    return unittest.skipUnless(is_pretty_midi_available(), "test requires pretty_midi")(test_case)


1106
1107
1108
1109
1110
1111
1112
1113
def cmd_exists(cmd):
    return shutil.which(cmd) is not None


def require_usr_bin_time(test_case):
    """
    Decorator marking a test that requires `/usr/bin/time`
    """
1114
    return unittest.skipUnless(cmd_exists("/usr/bin/time"), "test requires /usr/bin/time")(test_case)
1115
1116
1117
1118
1119
1120
1121
1122
1123


def require_sudachi(test_case):
    """
    Decorator marking a test that requires sudachi
    """
    return unittest.skipUnless(is_sudachi_available(), "test requires sudachi")(test_case)


1124
1125
1126
1127
1128
1129
1130
1131
1132
def require_sudachi_projection(test_case):
    """
    Decorator marking a test that requires sudachi_projection
    """
    return unittest.skipUnless(is_sudachi_projection_available(), "test requires sudachi which supports projection")(
        test_case
    )


1133
1134
1135
1136
1137
def require_jumanpp(test_case):
    """
    Decorator marking a test that requires jumanpp
    """
    return unittest.skipUnless(is_jumanpp_available(), "test requires jumanpp")(test_case)
1138
1139


1140
1141
1142
1143
1144
1145
1146
def require_cython(test_case):
    """
    Decorator marking a test that requires jumanpp
    """
    return unittest.skipUnless(is_cython_available(), "test requires cython")(test_case)


1147
1148
def get_gpu_count():
    """
Suraj Patil's avatar
Suraj Patil committed
1149
    Return the number of available gpus (regardless of whether torch, tf or jax is used)
1150
    """
1151
    if is_torch_available():
1152
1153
1154
        import torch

        return torch.cuda.device_count()
1155
    elif is_tf_available():
1156
1157
1158
        import tensorflow as tf

        return len(tf.config.list_physical_devices("GPU"))
Suraj Patil's avatar
Suraj Patil committed
1159
1160
1161
1162
    elif is_flax_available():
        import jax

        return jax.device_count()
1163
1164
1165
1166
    else:
        return 0


1167
def get_tests_dir(append_path=None):
1168
    """
1169
1170
1171
1172
    Args:
        append_path: optional path to append to the tests dir path

    Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1173
1174
        The full path to the `tests` dir, so that the tests can be invoked from anywhere. Optionally `append_path` is
        joined after the `tests` dir the former is provided.
1175

1176
1177
1178
    """
    # this function caller's __file__
    caller__file__ = inspect.stack()[1][1]
1179
    tests_dir = os.path.abspath(os.path.dirname(caller__file__))
1180
1181
1182
1183

    while not tests_dir.endswith("tests"):
        tests_dir = os.path.dirname(tests_dir)

1184
1185
1186
1187
    if append_path:
        return os.path.join(tests_dir, append_path)
    else:
        return tests_dir
1188
1189


1190
1191
1192
1193
1194
#
# Helper functions for dealing with testing text outputs
# The original code came from:
# https://github.com/fastai/fastai/blob/master/tests/utils/text.py

1195

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
# When any function contains print() calls that get overwritten, like progress bars,
# a special care needs to be applied, since under pytest -s captured output (capsys
# or contextlib.redirect_stdout) contains any temporary printed strings, followed by
# \r's. This helper function ensures that the buffer will contain the same output
# with and without -s in pytest, by turning:
# foo bar\r tar mar\r final message
# into:
# final message
# it can handle a single string or a multiline buffer
def apply_print_resets(buf):
    return re.sub(r"^.*\r", "", buf, 0, re.M)


def assert_screenout(out, what):
    out_pr = apply_print_resets(out).lower()
    match_str = out_pr.find(what.lower())
    assert match_str != -1, f"expecting to find {what} in output: f{out_pr}"


class CaptureStd:
Sylvain Gugger's avatar
Sylvain Gugger committed
1216
1217
    """
    Context manager to capture:
1218

1219
1220
        - stdout: replay it, clean it up and make it available via `obj.out`
        - stderr: replay it and make it available via `obj.err`
1221

1222
1223
1224
1225
1226
    Args:
        out (`bool`, *optional*, defaults to `True`): Whether to capture stdout or not.
        err (`bool`, *optional*, defaults to `True`): Whether to capture stderr or not.
        replay (`bool`, *optional*, defaults to `True`): Whether to replay or not.
            By default each captured stream gets replayed back on context's exit, so that one can see what the test was
Sylvain Gugger's avatar
Sylvain Gugger committed
1227
1228
            doing. If this is a not wanted behavior and the captured data shouldn't be replayed, pass `replay=False` to
            disable this feature.
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

    Examples:

    ```python
    # to capture stdout only with auto-replay
    with CaptureStdout() as cs:
        print("Secret message")
    assert "message" in cs.out

    # to capture stderr only with auto-replay
    import sys
Sylvain Gugger's avatar
Sylvain Gugger committed
1240

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
    with CaptureStderr() as cs:
        print("Warning: ", file=sys.stderr)
    assert "Warning" in cs.err

    # to capture both streams with auto-replay
    with CaptureStd() as cs:
        print("Secret message")
        print("Warning: ", file=sys.stderr)
    assert "message" in cs.out
    assert "Warning" in cs.err

    # to capture just one of the streams, and not the other, with auto-replay
    with CaptureStd(err=False) as cs:
        print("Secret message")
    assert "message" in cs.out
    # but best use the stream-specific subclasses

    # to capture without auto-replay
    with CaptureStd(replay=False) as cs:
        print("Secret message")
    assert "message" in cs.out
    ```"""
1263

1264
1265
1266
    def __init__(self, out=True, err=True, replay=True):
        self.replay = replay

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
        if out:
            self.out_buf = StringIO()
            self.out = "error: CaptureStd context is unfinished yet, called too early"
        else:
            self.out_buf = None
            self.out = "not capturing stdout"

        if err:
            self.err_buf = StringIO()
            self.err = "error: CaptureStd context is unfinished yet, called too early"
        else:
            self.err_buf = None
            self.err = "not capturing stderr"

    def __enter__(self):
        if self.out_buf:
            self.out_old = sys.stdout
            sys.stdout = self.out_buf

        if self.err_buf:
            self.err_old = sys.stderr
            sys.stderr = self.err_buf

        return self

    def __exit__(self, *exc):
        if self.out_buf:
            sys.stdout = self.out_old
1295
1296
1297
1298
            captured = self.out_buf.getvalue()
            if self.replay:
                sys.stdout.write(captured)
            self.out = apply_print_resets(captured)
1299
1300
1301

        if self.err_buf:
            sys.stderr = self.err_old
1302
1303
1304
1305
            captured = self.err_buf.getvalue()
            if self.replay:
                sys.stderr.write(captured)
            self.err = captured
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322

    def __repr__(self):
        msg = ""
        if self.out_buf:
            msg += f"stdout: {self.out}\n"
        if self.err_buf:
            msg += f"stderr: {self.err}\n"
        return msg


# in tests it's the best to capture only the stream that's wanted, otherwise
# it's easy to miss things, so unless you need to capture both streams, use the
# subclasses below (less typing). Or alternatively, configure `CaptureStd` to
# disable the stream you don't need to test.


class CaptureStdout(CaptureStd):
Patrick von Platen's avatar
Patrick von Platen committed
1323
    """Same as CaptureStd but captures only stdout"""
1324

1325
1326
    def __init__(self, replay=True):
        super().__init__(err=False, replay=replay)
1327
1328
1329


class CaptureStderr(CaptureStd):
Patrick von Platen's avatar
Patrick von Platen committed
1330
    """Same as CaptureStd but captures only stderr"""
1331

1332
1333
    def __init__(self, replay=True):
        super().__init__(out=False, replay=replay)
1334
1335


1336
class CaptureLogger:
Sylvain Gugger's avatar
Sylvain Gugger committed
1337
1338
    """
    Context manager to capture `logging` streams
1339
1340

    Args:
1341
        logger: 'logging` logger object
1342

1343
    Returns:
1344
1345
        The captured output is available via `self.out`

1346
    Example:
1347

1348
1349
1350
    ```python
    >>> from transformers import logging
    >>> from transformers.testing_utils import CaptureLogger
1351

1352
1353
1354
1355
1356
    >>> msg = "Testing 1, 2, 3"
    >>> logging.set_verbosity_info()
    >>> logger = logging.get_logger("transformers.models.bart.tokenization_bart")
    >>> with CaptureLogger(logger) as cl:
    ...     logger.info(msg)
Sylvain Gugger's avatar
Sylvain Gugger committed
1357
    >>> assert cl.out, msg + "\n"
1358
    ```
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
    """

    def __init__(self, logger):
        self.logger = logger
        self.io = StringIO()
        self.sh = logging.StreamHandler(self.io)
        self.out = ""

    def __enter__(self):
        self.logger.addHandler(self.sh)
        return self

    def __exit__(self, *exc):
        self.logger.removeHandler(self.sh)
        self.out = self.io.getvalue()

    def __repr__(self):
        return f"captured: {self.out}\n"


1379
1380
1381
1382
1383
1384
@contextlib.contextmanager
def LoggingLevel(level):
    """
    This is a context manager to temporarily change transformers modules logging level to the desired value and have it
    restored to the original setting at the end of the scope.

1385
    Example:
1386

1387
1388
    ```python
    with LoggingLevel(logging.INFO):
1389
        AutoModel.from_pretrained("openai-community/gpt2")  # calls logger.info() several times
1390
    ```
1391
1392
1393
1394
1395
1396
1397
1398
1399
    """
    orig_level = transformers_logging.get_verbosity()
    try:
        transformers_logging.set_verbosity(level)
        yield
    finally:
        transformers_logging.set_verbosity(orig_level)


1400
1401
1402
1403
1404
1405
@contextlib.contextmanager
# adapted from https://stackoverflow.com/a/64789046/9201239
def ExtendSysPath(path: Union[str, os.PathLike]) -> Iterator[None]:
    """
    Temporary add given path to `sys.path`.

1406
    Usage :
1407

1408
    ```python
Sylvain Gugger's avatar
Sylvain Gugger committed
1409
1410
    with ExtendSysPath("/path/to/dir"):
        mymodule = importlib.import_module("mymodule")
1411
    ```
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
    """

    path = os.fspath(path)
    try:
        sys.path.insert(0, path)
        yield
    finally:
        sys.path.remove(path)


1422
class TestCasePlus(unittest.TestCase):
Sylvain Gugger's avatar
Sylvain Gugger committed
1423
    """
1424
    This class extends *unittest.TestCase* with additional features.
1425

1426
1427
1428
1429
1430
1431
    Feature 1: A set of fully resolved important file and dir path accessors.

    In tests often we need to know where things are relative to the current test file, and it's not trivial since the
    test could be invoked from more than one directory or could reside in sub-directories with different depths. This
    class solves this problem by sorting out all the basic paths and provides easy accessors to them:

1432
    - `pathlib` objects (all fully resolved):
1433

1434
1435
1436
1437
1438
1439
       - `test_file_path` - the current test file path (=`__file__`)
       - `test_file_dir` - the directory containing the current test file
       - `tests_dir` - the directory of the `tests` test suite
       - `examples_dir` - the directory of the `examples` test suite
       - `repo_root_dir` - the directory of the repository
       - `src_dir` - the directory of `src` (i.e. where the `transformers` sub-dir resides)
1440

1441
    - stringified paths---same as above but these return paths as strings, rather than `pathlib` objects:
1442

1443
1444
1445
1446
1447
1448
       - `test_file_path_str`
       - `test_file_dir_str`
       - `tests_dir_str`
       - `examples_dir_str`
       - `repo_root_dir_str`
       - `src_dir_str`
1449

1450
    Feature 2: Flexible auto-removable temporary dirs which are guaranteed to get removed at the end of test.
1451

1452
    1. Create a unique temporary dir:
1453

1454
1455
1456
1457
    ```python
    def test_whatever(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
    ```
1458

1459
    `tmp_dir` will contain the path to the created temporary dir. It will be automatically removed at the end of the
1460
1461
1462
1463
1464
    test.


    2. Create a temporary dir of my choice, ensure it's empty before the test starts and don't
    empty it after the test.
1465

1466
1467
1468
1469
    ```python
    def test_whatever(self):
        tmp_dir = self.get_auto_remove_tmp_dir("./xxx")
    ```
1470

1471
1472
    This is useful for debug when you want to monitor a specific directory and want to make sure the previous tests
    didn't leave any data in there.
1473

1474
1475
    3. You can override the first two options by directly overriding the `before` and `after` args, leading to the
        following behavior:
1476

1477
    `before=True`: the temporary dir will always be cleared at the beginning of the test.
1478

1479
    `before=False`: if the temporary dir already existed, any existing files will remain there.
1480

1481
    `after=True`: the temporary dir will always be deleted at the end of the test.
1482

1483
    `after=False`: the temporary dir will always be left intact at the end of the test.
1484

1485
    Note 1: In order to run the equivalent of `rm -r` safely, only subdirs of the project repository checkout are
Sylvain Gugger's avatar
Sylvain Gugger committed
1486
1487
    allowed if an explicit `tmp_dir` is used, so that by mistake no `/tmp` or similar important part of the filesystem
    will get nuked. i.e. please always pass paths that start with `./`
1488

1489
1490
    Note 2: Each test can register multiple temporary dirs and they all will get auto-removed, unless requested
    otherwise.
1491

Sylvain Gugger's avatar
Sylvain Gugger committed
1492
1493
    Feature 3: Get a copy of the `os.environ` object that sets up `PYTHONPATH` specific to the current test suite. This
    is useful for invoking external programs from the test suite - e.g. distributed training.
1494
1495


1496
1497
1498
1499
    ```python
    def test_whatever(self):
        env = self.get_env()
    ```"""
1500
1501

    def setUp(self):
1502
        # get_auto_remove_tmp_dir feature:
1503
1504
        self.teardown_tmp_dirs = []

1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
        # figure out the resolved paths for repo_root, tests, examples, etc.
        self._test_file_path = inspect.getfile(self.__class__)
        path = Path(self._test_file_path).resolve()
        self._test_file_dir = path.parents[0]
        for up in [1, 2, 3]:
            tmp_dir = path.parents[up]
            if (tmp_dir / "src").is_dir() and (tmp_dir / "tests").is_dir():
                break
        if tmp_dir:
            self._repo_root_dir = tmp_dir
        else:
            raise ValueError(f"can't figure out the root of the repo from {self._test_file_path}")
        self._tests_dir = self._repo_root_dir / "tests"
        self._examples_dir = self._repo_root_dir / "examples"
        self._src_dir = self._repo_root_dir / "src"

    @property
    def test_file_path(self):
        return self._test_file_path

    @property
    def test_file_path_str(self):
        return str(self._test_file_path)

    @property
    def test_file_dir(self):
        return self._test_file_dir

    @property
    def test_file_dir_str(self):
        return str(self._test_file_dir)

    @property
    def tests_dir(self):
        return self._tests_dir

    @property
    def tests_dir_str(self):
        return str(self._tests_dir)

    @property
    def examples_dir(self):
        return self._examples_dir

    @property
    def examples_dir_str(self):
        return str(self._examples_dir)

    @property
    def repo_root_dir(self):
        return self._repo_root_dir

    @property
    def repo_root_dir_str(self):
        return str(self._repo_root_dir)

    @property
    def src_dir(self):
        return self._src_dir

    @property
    def src_dir_str(self):
        return str(self._src_dir)

    def get_env(self):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1571
1572
        Return a copy of the `os.environ` object that sets up `PYTHONPATH` correctly, depending on the test suite it's
        invoked from. This is useful for invoking external programs from the test suite - e.g. distributed training.
1573

Sylvain Gugger's avatar
Sylvain Gugger committed
1574
1575
        It always inserts `./src` first, then `./tests` or `./examples` depending on the test suite type and finally
        the preset `PYTHONPATH` if any (all full resolved paths).
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588

        """
        env = os.environ.copy()
        paths = [self.src_dir_str]
        if "/examples" in self.test_file_dir_str:
            paths.append(self.examples_dir_str)
        else:
            paths.append(self.tests_dir_str)
        paths.append(env.get("PYTHONPATH", ""))

        env["PYTHONPATH"] = ":".join(paths)
        return env

1589
    def get_auto_remove_tmp_dir(self, tmp_dir=None, before=None, after=None):
1590
1591
        """
        Args:
1592
1593
            tmp_dir (`string`, *optional*):
                if `None`:
1594
1595

                   - a unique temporary path will be created
1596
1597
                   - sets `before=True` if `before` is `None`
                   - sets `after=True` if `after` is `None`
1598
1599
                else:

1600
1601
1602
1603
                   - `tmp_dir` will be created
                   - sets `before=True` if `before` is `None`
                   - sets `after=False` if `after` is `None`
            before (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1604
1605
                If `True` and the `tmp_dir` already exists, make sure to empty it right away if `False` and the
                `tmp_dir` already exists, any existing files will remain there.
1606
            after (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1607
1608
                If `True`, delete the `tmp_dir` at the end of the test if `False`, leave the `tmp_dir` and its contents
                intact at the end of the test.
1609
1610

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1611
            tmp_dir(`string`): either the same value as passed via *tmp_dir* or the path to the auto-selected tmp dir
1612
1613
        """
        if tmp_dir is not None:
1614
1615
1616
1617
1618
1619
1620
1621
1622
            # defining the most likely desired behavior for when a custom path is provided.
            # this most likely indicates the debug mode where we want an easily locatable dir that:
            # 1. gets cleared out before the test (if it already exists)
            # 2. is left intact after the test
            if before is None:
                before = True
            if after is None:
                after = False

1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
            # using provided path
            path = Path(tmp_dir).resolve()

            # to avoid nuking parts of the filesystem, only relative paths are allowed
            if not tmp_dir.startswith("./"):
                raise ValueError(
                    f"`tmp_dir` can only be a relative path, i.e. `./some/path`, but received `{tmp_dir}`"
                )

            # ensure the dir is empty to start with
            if before is True and path.exists():
                shutil.rmtree(tmp_dir, ignore_errors=True)

            path.mkdir(parents=True, exist_ok=True)

        else:
1639
1640
1641
1642
1643
1644
1645
1646
1647
            # defining the most likely desired behavior for when a unique tmp path is auto generated
            # (not a debug mode), here we require a unique tmp dir that:
            # 1. is empty before the test (it will be empty in this situation anyway)
            # 2. gets fully removed after the test
            if before is None:
                before = True
            if after is None:
                after = True

1648
1649
1650
1651
1652
1653
1654
1655
1656
            # using unique tmp dir (always empty, regardless of `before`)
            tmp_dir = tempfile.mkdtemp()

        if after is True:
            # register for deletion
            self.teardown_tmp_dirs.append(tmp_dir)

        return tmp_dir

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
    def python_one_liner_max_rss(self, one_liner_str):
        """
        Runs the passed python one liner (just the code) and returns how much max cpu memory was used to run the
        program.

        Args:
            one_liner_str (`string`):
                a python one liner code that gets passed to `python -c`

        Returns:
            max cpu memory bytes used to run the program. This value is likely to vary slightly from run to run.

        Requirements:
            this helper needs `/usr/bin/time` to be installed (`apt install time`)

        Example:

        ```
1675
        one_liner_str = 'from transformers import AutoModel; AutoModel.from_pretrained("google-t5/t5-large")'
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
        max_rss = self.python_one_liner_max_rss(one_liner_str)
        ```
        """

        if not cmd_exists("/usr/bin/time"):
            raise ValueError("/usr/bin/time is required, install with `apt install time`")

        cmd = shlex.split(f"/usr/bin/time -f %M python -c '{one_liner_str}'")
        with CaptureStd() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
        # returned data is in KB so convert to bytes
        max_rss = int(cs.err.split("\n")[-2].replace("stderr: ", "")) * 1024
        return max_rss

1690
    def tearDown(self):
1691
        # get_auto_remove_tmp_dir feature: remove registered temp dirs
1692
1693
1694
        for path in self.teardown_tmp_dirs:
            shutil.rmtree(path, ignore_errors=True)
        self.teardown_tmp_dirs = []
1695
1696
1697
        if is_accelerate_available():
            AcceleratorState._reset_state()
            PartialState._reset_state()
1698

1699
1700
1701
1702
1703
            # delete all the env variables having `ACCELERATE` in them
            for k in list(os.environ.keys()):
                if "ACCELERATE" in k:
                    del os.environ[k]

1704
1705

def mockenv(**kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
1706
    """
1707
1708
    this is a convenience wrapper, that allows this ::

Sylvain Gugger's avatar
Sylvain Gugger committed
1709
1710
    @mockenv(RUN_SLOW=True, USE_TF=False) def test_something():
        run_slow = os.getenv("RUN_SLOW", False) use_tf = os.getenv("USE_TF", False)
1711
1712

    """
1713
    return mock.patch.dict(os.environ, kwargs)
1714
1715


1716
1717
1718
1719
# from https://stackoverflow.com/a/34333710/9201239
@contextlib.contextmanager
def mockenv_context(*remove, **update):
    """
1720
    Temporarily updates the `os.environ` dictionary in-place. Similar to mockenv
1721

1722
    The `os.environ` dictionary is updated in-place so that the modification is sure to work in all situations.
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747

    Args:
      remove: Environment variables to remove.
      update: Dictionary of environment variables and values to add/update.
    """
    env = os.environ
    update = update or {}
    remove = remove or []

    # List of environment variables being updated or removed.
    stomped = (set(update.keys()) | set(remove)) & set(env.keys())
    # Environment variables and values to restore on exit.
    update_after = {k: env[k] for k in stomped}
    # Environment variables and values to remove on exit.
    remove_after = frozenset(k for k in update if k not in env)

    try:
        env.update(update)
        [env.pop(k, None) for k in remove]
        yield
    finally:
        env.update(update_after)
        [env.pop(k) for k in remove_after]


1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
# --- pytest conf functions --- #

# to avoid multiple invocation from tests/conftest.py and examples/conftest.py - make sure it's called only once
pytest_opt_registered = {}


def pytest_addoption_shared(parser):
    """
    This function is to be called from `conftest.py` via `pytest_addoption` wrapper that has to be defined there.

    It allows loading both `conftest.py` files at once without causing a failure due to adding the same `pytest`
    option.

    """
    option = "--make-reports"
    if option not in pytest_opt_registered:
        parser.addoption(
            option,
            action="store",
            default=False,
            help="generate report files. The value of this option is used as a prefix to report names",
        )
        pytest_opt_registered[option] = 1


1773
1774
def pytest_terminal_summary_main(tr, id):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1775
1776
    Generate multiple reports at the end of test suite run - each report goes into a dedicated file in the current
    directory. The report files are prefixed with the test suite name.
1777
1778
1779

    This function emulates --duration and -rA pytest arguments.

Sylvain Gugger's avatar
Sylvain Gugger committed
1780
1781
    This function is to be called from `conftest.py` via `pytest_terminal_summary` wrapper that has to be defined
    there.
1782
1783
1784

    Args:
    - tr: `terminalreporter` passed from `conftest.py`
1785
1786
    - id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is
      needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other.
1787

Sylvain Gugger's avatar
Sylvain Gugger committed
1788
1789
1790
    NB: this functions taps into a private _pytest API and while unlikely, it could break should pytest do internal
    changes - also it calls default internal methods of terminalreporter which can be hijacked by various `pytest-`
    plugins and interfere.
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802

    """
    from _pytest.config import create_terminal_writer

    if not len(id):
        id = "tests"

    config = tr.config
    orig_writer = config.get_terminal_writer()
    orig_tbstyle = config.option.tbstyle
    orig_reportchars = tr.reportchars

1803
    dir = f"reports/{id}"
1804
    Path(dir).mkdir(parents=True, exist_ok=True)
Stas Bekman's avatar
Stas Bekman committed
1805
    report_files = {
1806
        k: f"{dir}/{k}.txt"
Stas Bekman's avatar
Stas Bekman committed
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
        for k in [
            "durations",
            "errors",
            "failures_long",
            "failures_short",
            "failures_line",
            "passes",
            "stats",
            "summary_short",
            "warnings",
        ]
    }
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838

    # custom durations report
    # note: there is no need to call pytest --durations=XX to get this separate report
    # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/runner.py#L66
    dlist = []
    for replist in tr.stats.values():
        for rep in replist:
            if hasattr(rep, "duration"):
                dlist.append(rep)
    if dlist:
        dlist.sort(key=lambda x: x.duration, reverse=True)
        with open(report_files["durations"], "w") as f:
            durations_min = 0.05  # sec
            f.write("slowest durations\n")
            for i, rep in enumerate(dlist):
                if rep.duration < durations_min:
                    f.write(f"{len(dlist)-i} durations < {durations_min} secs were omitted")
                    break
                f.write(f"{rep.duration:02.2f}s {rep.when:<8} {rep.nodeid}\n")

Stas Bekman's avatar
Stas Bekman committed
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
    def summary_failures_short(tr):
        # expecting that the reports were --tb=long (default) so we chop them off here to the last frame
        reports = tr.getreports("failed")
        if not reports:
            return
        tr.write_sep("=", "FAILURES SHORT STACK")
        for rep in reports:
            msg = tr._getfailureheadline(rep)
            tr.write_sep("_", msg, red=True, bold=True)
            # chop off the optional leading extra frames, leaving only the last one
            longrepr = re.sub(r".*_ _ _ (_ ){10,}_ _ ", "", rep.longreprtext, 0, re.M | re.S)
            tr._tw.line(longrepr)
            # note: not printing out any rep.sections to keep the report short

1853
1854
1855
1856
    # use ready-made report funcs, we are just hijacking the filehandle to log to a dedicated file each
    # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/terminal.py#L814
    # note: some pytest plugins may interfere by hijacking the default `terminalreporter` (e.g.
    # pytest-instafail does that)
Stas Bekman's avatar
Stas Bekman committed
1857
1858
1859
1860

    # report failures with line/short/long styles
    config.option.tbstyle = "auto"  # full tb
    with open(report_files["failures_long"], "w") as f:
1861
1862
1863
        tr._tw = create_terminal_writer(config, f)
        tr.summary_failures()

Stas Bekman's avatar
Stas Bekman committed
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
    # config.option.tbstyle = "short" # short tb
    with open(report_files["failures_short"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        summary_failures_short(tr)

    config.option.tbstyle = "line"  # one line per error
    with open(report_files["failures_line"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_failures()

    with open(report_files["errors"], "w") as f:
1875
1876
1877
        tr._tw = create_terminal_writer(config, f)
        tr.summary_errors()

Stas Bekman's avatar
Stas Bekman committed
1878
    with open(report_files["warnings"], "w") as f:
1879
1880
1881
1882
        tr._tw = create_terminal_writer(config, f)
        tr.summary_warnings()  # normal warnings
        tr.summary_warnings()  # final warnings

Stas Bekman's avatar
Stas Bekman committed
1883
    tr.reportchars = "wPpsxXEf"  # emulate -rA (used in summary_passes() and short_test_summary())
1884
1885
1886
1887
1888
1889
1890

    # Skip the `passes` report, as it starts to take more than 5 minutes, and sometimes it timeouts on CircleCI if it
    # takes > 10 minutes (as this part doesn't generate any output on the terminal).
    # (also, it seems there is no useful information in this report, and we rarely need to read it)
    # with open(report_files["passes"], "w") as f:
    #     tr._tw = create_terminal_writer(config, f)
    #     tr.summary_passes()
1891

Stas Bekman's avatar
Stas Bekman committed
1892
    with open(report_files["summary_short"], "w") as f:
1893
1894
1895
        tr._tw = create_terminal_writer(config, f)
        tr.short_test_summary()

Stas Bekman's avatar
Stas Bekman committed
1896
    with open(report_files["stats"], "w") as f:
1897
1898
1899
1900
1901
1902
1903
        tr._tw = create_terminal_writer(config, f)
        tr.summary_stats()

    # restore:
    tr._tw = orig_writer
    tr.reportchars = orig_reportchars
    config.option.tbstyle = orig_tbstyle
1904
1905


1906
# --- distributed testing functions --- #
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

# adapted from https://stackoverflow.com/a/59041913/9201239
import asyncio  # noqa


class _RunOutput:
    def __init__(self, returncode, stdout, stderr):
        self.returncode = returncode
        self.stdout = stdout
        self.stderr = stderr


async def _read_stream(stream, callback):
    while True:
        line = await stream.readline()
        if line:
            callback(line)
        else:
            break


async def _stream_subprocess(cmd, env=None, stdin=None, timeout=None, quiet=False, echo=False) -> _RunOutput:
    if echo:
        print("\nRunning: ", " ".join(cmd))

    p = await asyncio.create_subprocess_exec(
        cmd[0],
        *cmd[1:],
        stdin=stdin,
        stdout=asyncio.subprocess.PIPE,
        stderr=asyncio.subprocess.PIPE,
        env=env,
    )

    # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
    # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
    #
    # If it starts hanging, will need to switch to the following code. The problem is that no data
    # will be seen until it's done and if it hangs for example there will be no debug info.
    # out, err = await p.communicate()
    # return _RunOutput(p.returncode, out, err)

    out = []
    err = []

    def tee(line, sink, pipe, label=""):
        line = line.decode("utf-8").rstrip()
        sink.append(line)
        if not quiet:
            print(label, line, file=pipe)

    # XXX: the timeout doesn't seem to make any difference here
    await asyncio.wait(
        [
Stas Bekman's avatar
Stas Bekman committed
1961
            _read_stream(p.stdout, lambda l: tee(l, out, sys.stdout, label="stdout:")),
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
            _read_stream(p.stderr, lambda l: tee(l, err, sys.stderr, label="stderr:")),
        ],
        timeout=timeout,
    )
    return _RunOutput(await p.wait(), out, err)


def execute_subprocess_async(cmd, env=None, stdin=None, timeout=180, quiet=False, echo=True) -> _RunOutput:
    loop = asyncio.get_event_loop()
    result = loop.run_until_complete(
        _stream_subprocess(cmd, env=env, stdin=stdin, timeout=timeout, quiet=quiet, echo=echo)
    )

    cmd_str = " ".join(cmd)
    if result.returncode > 0:
1977
        stderr = "\n".join(result.stderr)
1978
        raise RuntimeError(
1979
1980
            f"'{cmd_str}' failed with returncode {result.returncode}\n\n"
            f"The combined stderr from workers follows:\n{stderr}"
1981
        )
Stas Bekman's avatar
Stas Bekman committed
1982
1983
1984
1985

    # check that the subprocess actually did run and produced some output, should the test rely on
    # the remote side to do the testing
    if not result.stdout and not result.stderr:
1986
1987
1988
        raise RuntimeError(f"'{cmd_str}' produced no output.")

    return result
1989
1990


1991
1992
def pytest_xdist_worker_id():
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1993
1994
    Returns an int value of worker's numerical id under `pytest-xdist`'s concurrent workers `pytest -n N` regime, or 0
    if `-n 1` or `pytest-xdist` isn't being used.
1995
1996
1997
1998
1999
2000
2001
2002
    """
    worker = os.environ.get("PYTEST_XDIST_WORKER", "gw0")
    worker = re.sub(r"^gw", "", worker, 0, re.M)
    return int(worker)


def get_torch_dist_unique_port():
    """
2003
    Returns a port number that can be fed to `torch.distributed.launch`'s `--master_port` argument.
2004

Sylvain Gugger's avatar
Sylvain Gugger committed
2005
2006
    Under `pytest-xdist` it adds a delta number based on a worker id so that concurrent tests don't try to use the same
    port at once.
2007
2008
2009
2010
2011
2012
    """
    port = 29500
    uniq_delta = pytest_xdist_worker_id()
    return port + uniq_delta


2013
2014
2015
2016
2017
def nested_simplify(obj, decimals=3):
    """
    Simplifies an object by rounding float numbers, and downcasting tensors/numpy arrays to get simple equality test
    within tests.
    """
2018
2019
    import numpy as np

2020
2021
    if isinstance(obj, list):
        return [nested_simplify(item, decimals) for item in obj]
2022
2023
    if isinstance(obj, tuple):
        return tuple([nested_simplify(item, decimals) for item in obj])
2024
2025
    elif isinstance(obj, np.ndarray):
        return nested_simplify(obj.tolist())
2026
    elif isinstance(obj, Mapping):
2027
        return {nested_simplify(k, decimals): nested_simplify(v, decimals) for k, v in obj.items()}
2028
    elif isinstance(obj, (str, int, np.int64)):
2029
        return obj
2030
2031
    elif obj is None:
        return obj
2032
    elif is_torch_available() and isinstance(obj, torch.Tensor):
2033
        return nested_simplify(obj.tolist(), decimals)
2034
2035
2036
2037
    elif is_tf_available() and tf.is_tensor(obj):
        return nested_simplify(obj.numpy().tolist())
    elif isinstance(obj, float):
        return round(obj, decimals)
2038
    elif isinstance(obj, (np.int32, np.float32)):
2039
        return nested_simplify(obj.item(), decimals)
2040
2041
    else:
        raise Exception(f"Not supported: {type(obj)}")
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058


def check_json_file_has_correct_format(file_path):
    with open(file_path, "r") as f:
        lines = f.readlines()
        if len(lines) == 1:
            # length can only be 1 if dict is empty
            assert lines[0] == "{}"
        else:
            # otherwise make sure json has correct format (at least 3 lines)
            assert len(lines) >= 3
            # each key one line, ident should be 2, min length is 3
            assert lines[0].strip() == "{"
            for line in lines[1:-1]:
                left_indent = len(lines[1]) - len(lines[1].lstrip())
                assert left_indent == 2
            assert lines[-1].strip() == "}"
NielsRogge's avatar
NielsRogge committed
2059
2060
2061
2062
2063
2064


def to_2tuple(x):
    if isinstance(x, collections.abc.Iterable):
        return x
    return (x, x)
Zachary Mueller's avatar
Zachary Mueller committed
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086


# These utils relate to ensuring the right error message is received when running scripts
class SubprocessCallException(Exception):
    pass


def run_command(command: List[str], return_stdout=False):
    """
    Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture
    if an error occured while running `command`
    """
    try:
        output = subprocess.check_output(command, stderr=subprocess.STDOUT)
        if return_stdout:
            if hasattr(output, "decode"):
                output = output.decode("utf-8")
            return output
    except subprocess.CalledProcessError as e:
        raise SubprocessCallException(
            f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}"
        ) from e
2087
2088
2089
2090
2091


class RequestCounter:
    """
    Helper class that will count all requests made online.
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102

    Might not be robust if urllib3 changes its logging format but should be good enough for us.

    Usage:
    ```py
    with RequestCounter() as counter:
        _ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert")
    assert counter["GET"] == 0
    assert counter["HEAD"] == 1
    assert counter.total_calls == 1
    ```
2103
2104
2105
    """

    def __enter__(self):
2106
2107
2108
        self._counter = defaultdict(int)
        self.patcher = patch.object(urllib3.connectionpool.log, "debug", wraps=urllib3.connectionpool.log.debug)
        self.mock = self.patcher.start()
2109
2110
        return self

2111
2112
2113
2114
2115
2116
2117
2118
    def __exit__(self, *args, **kwargs) -> None:
        for call in self.mock.call_args_list:
            log = call.args[0] % call.args[1:]
            for method in ("HEAD", "GET", "POST", "PUT", "DELETE", "CONNECT", "OPTIONS", "TRACE", "PATCH"):
                if method in log:
                    self._counter[method] += 1
                    break
        self.patcher.stop()
2119

2120
2121
    def __getitem__(self, key: str) -> int:
        return self._counter[key]
2122

2123
2124
2125
    @property
    def total_calls(self) -> int:
        return sum(self._counter.values())
2126
2127


2128
def is_flaky(max_attempts: int = 5, wait_before_retry: Optional[float] = None, description: Optional[str] = None):
2129
2130
2131
2132
2133
2134
2135
2136
    """
    To decorate flaky tests. They will be retried on failures.

    Args:
        max_attempts (`int`, *optional*, defaults to 5):
            The maximum number of attempts to retry the flaky test.
        wait_before_retry (`float`, *optional*):
            If provided, will wait that number of seconds before retrying the test.
2137
2138
2139
        description (`str`, *optional*):
            A string to describe the situation (what / where / why is flaky, link to GH issue/PR comments, errors,
            etc.)
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
    """

    def decorator(test_func_ref):
        @functools.wraps(test_func_ref)
        def wrapper(*args, **kwargs):
            retry_count = 1

            while retry_count < max_attempts:
                try:
                    return test_func_ref(*args, **kwargs)

                except Exception as err:
                    print(f"Test failed with {err} at try {retry_count}/{max_attempts}.", file=sys.stderr)
                    if wait_before_retry is not None:
                        time.sleep(wait_before_retry)
                    retry_count += 1

            return test_func_ref(*args, **kwargs)

        return wrapper

    return decorator
2162
2163


2164
def run_test_in_subprocess(test_case, target_func, inputs=None, timeout=None):
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
    """
    To run a test in a subprocess. In particular, this can avoid (GPU) memory issue.

    Args:
        test_case (`unittest.TestCase`):
            The test that will run `target_func`.
        target_func (`Callable`):
            The function implementing the actual testing logic.
        inputs (`dict`, *optional*, defaults to `None`):
            The inputs that will be passed to `target_func` through an (input) queue.
2175
2176
2177
        timeout (`int`, *optional*, defaults to `None`):
            The timeout (in seconds) that will be passed to the input and output queues. If not specified, the env.
            variable `PYTEST_TIMEOUT` will be checked. If still `None`, its value will be set to `600`.
2178
    """
2179
2180
    if timeout is None:
        timeout = int(os.environ.get("PYTEST_TIMEOUT", 600))
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204

    start_methohd = "spawn"
    ctx = multiprocessing.get_context(start_methohd)

    input_queue = ctx.Queue(1)
    output_queue = ctx.JoinableQueue(1)

    # We can't send `unittest.TestCase` to the child, otherwise we get issues regarding pickle.
    input_queue.put(inputs, timeout=timeout)

    process = ctx.Process(target=target_func, args=(input_queue, output_queue, timeout))
    process.start()
    # Kill the child process if we can't get outputs from it in time: otherwise, the hanging subprocess prevents
    # the test to exit properly.
    try:
        results = output_queue.get(timeout=timeout)
        output_queue.task_done()
    except Exception as e:
        process.terminate()
        test_case.fail(e)
    process.join(timeout=timeout)

    if results["error"] is not None:
        test_case.fail(f'{results["error"]}')
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217


"""
The following contains utils to run the documentation tests without having to overwrite any files.

The `preprocess_string` function adds `# doctest: +IGNORE_RESULT` markers on the fly anywhere a `load_dataset` call is
made as a print would otherwise fail the corresonding line.

To skip cuda tests, make sure to call `SKIP_CUDA_DOCTEST=1 pytest --doctest-modules <path_to_files_to_test>
"""


def preprocess_string(string, skip_cuda_tests):
2218
    """Prepare a docstring or a `.md` file to be run by doctest.
2219

2220
    The argument `string` would be the whole file content if it is a `.md` file. For a python file, it would be one of
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
    its docstring. In each case, it may contain multiple python code examples. If `skip_cuda_tests` is `True` and a
    cuda stuff is detective (with a heuristic), this method will return an empty string so no doctest will be run for
    `string`.
    """
    codeblock_pattern = r"(```(?:python|py)\s*\n\s*>>> )((?:.*?\n)*?.*?```)"
    codeblocks = re.split(re.compile(codeblock_pattern, flags=re.MULTILINE | re.DOTALL), string)
    is_cuda_found = False
    for i, codeblock in enumerate(codeblocks):
        if "load_dataset(" in codeblock and "# doctest: +IGNORE_RESULT" not in codeblock:
            codeblocks[i] = re.sub(r"(>>> .*load_dataset\(.*)", r"\1 # doctest: +IGNORE_RESULT", codeblock)
        if (
            (">>>" in codeblock or "..." in codeblock)
            and re.search(r"cuda|to\(0\)|device=0", codeblock)
            and skip_cuda_tests
        ):
            is_cuda_found = True
            break
Yih-Dar's avatar
Yih-Dar committed
2238

2239
2240
2241
    modified_string = ""
    if not is_cuda_found:
        modified_string = "".join(codeblocks)
Yih-Dar's avatar
Yih-Dar committed
2242

2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
    return modified_string


class HfDocTestParser(doctest.DocTestParser):
    """
    Overwrites the DocTestParser from doctest to properly parse the codeblocks that are formatted with black. This
    means that there are no extra lines at the end of our snippets. The `# doctest: +IGNORE_RESULT` marker is also
    added anywhere a `load_dataset` call is made as a print would otherwise fail the corresponding line.

    Tests involving cuda are skipped base on a naive pattern that should be updated if it is not enough.
    """

    # This regular expression is used to find doctest examples in a
    # string.  It defines three groups: `source` is the source code
    # (including leading indentation and prompts); `indent` is the
    # indentation of the first (PS1) line of the source code; and
    # `want` is the expected output (including leading indentation).
    # fmt: off
    _EXAMPLE_RE = re.compile(r'''
        # Source consists of a PS1 line followed by zero or more PS2 lines.
        (?P<source>
            (?:^(?P<indent> [ ]*) >>>    .*)    # PS1 line
            (?:\n           [ ]*  \.\.\. .*)*)  # PS2 lines
        \n?
        # Want consists of any non-blank lines that do not start with PS1.
        (?P<want> (?:(?![ ]*$)    # Not a blank line
             (?![ ]*>>>)          # Not a line starting with PS1
             # !!!!!!!!!!! HF Specific !!!!!!!!!!!
             (?:(?!```).)*        # Match any character except '`' until a '```' is found (this is specific to HF because black removes the last line)
             # !!!!!!!!!!! HF Specific !!!!!!!!!!!
             (?:\n|$)  # Match a new line or end of string
          )*)
        ''', re.MULTILINE | re.VERBOSE
    )
    # fmt: on

    # !!!!!!!!!!! HF Specific !!!!!!!!!!!
    skip_cuda_tests: bool = bool(os.environ.get("SKIP_CUDA_DOCTEST", False))
    # !!!!!!!!!!! HF Specific !!!!!!!!!!!

    def parse(self, string, name="<string>"):
        """
        Overwrites the `parse` method to incorporate a skip for CUDA tests, and remove logs and dataset prints before
        calling `super().parse`
        """
        string = preprocess_string(string, self.skip_cuda_tests)
        return super().parse(string, name)


class HfDoctestModule(Module):
    """
    Overwrites the `DoctestModule` of the pytest package to make sure the HFDocTestParser is used when discovering
    tests.
    """

    def collect(self) -> Iterable[DoctestItem]:
        class MockAwareDocTestFinder(doctest.DocTestFinder):
            """A hackish doctest finder that overrides stdlib internals to fix a stdlib bug.

            https://github.com/pytest-dev/pytest/issues/3456 https://bugs.python.org/issue25532
            """

            def _find_lineno(self, obj, source_lines):
                """Doctest code does not take into account `@property`, this
                is a hackish way to fix it. https://bugs.python.org/issue17446

                Wrapped Doctests will need to be unwrapped so the correct line number is returned. This will be
                reported upstream. #8796
                """
                if isinstance(obj, property):
                    obj = getattr(obj, "fget", obj)

                if hasattr(obj, "__wrapped__"):
                    # Get the main obj in case of it being wrapped
                    obj = inspect.unwrap(obj)

                # Type ignored because this is a private function.
                return super()._find_lineno(  # type:ignore[misc]
                    obj,
                    source_lines,
                )

            def _find(self, tests, obj, name, module, source_lines, globs, seen) -> None:
                if _is_mocked(obj):
                    return
                with _patch_unwrap_mock_aware():
                    # Type ignored because this is a private function.
                    super()._find(  # type:ignore[misc]
                        tests, obj, name, module, source_lines, globs, seen
                    )

        if self.path.name == "conftest.py":
            module = self.config.pluginmanager._importconftest(
                self.path,
                self.config.getoption("importmode"),
                rootpath=self.config.rootpath,
            )
        else:
            try:
                module = import_path(
                    self.path,
                    root=self.config.rootpath,
                    mode=self.config.getoption("importmode"),
                )
            except ImportError:
                if self.config.getvalue("doctest_ignore_import_errors"):
                    skip("unable to import module %r" % self.path)
                else:
                    raise

        # !!!!!!!!!!! HF Specific !!!!!!!!!!!
        finder = MockAwareDocTestFinder(parser=HfDocTestParser())
        # !!!!!!!!!!! HF Specific !!!!!!!!!!!
        optionflags = get_optionflags(self)
        runner = _get_runner(
            verbose=False,
            optionflags=optionflags,
            checker=_get_checker(),
            continue_on_failure=_get_continue_on_failure(self.config),
        )
        for test in finder.find(module, module.__name__):
            if test.examples:  # skip empty doctests and cuda
                yield DoctestItem.from_parent(self, name=test.name, runner=runner, dtest=test)
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448


def _device_agnostic_dispatch(device: str, dispatch_table: Dict[str, Callable], *args, **kwargs):
    if device not in dispatch_table:
        return dispatch_table["default"](*args, **kwargs)

    fn = dispatch_table[device]

    # Some device agnostic functions return values. Need to guard against `None`
    # instead at user level.
    if fn is None:
        return None
    return fn(*args, **kwargs)


if is_torch_available():
    # Mappings from device names to callable functions to support device agnostic
    # testing.
    BACKEND_MANUAL_SEED = {"cuda": torch.cuda.manual_seed, "cpu": torch.manual_seed, "default": torch.manual_seed}
    BACKEND_EMPTY_CACHE = {"cuda": torch.cuda.empty_cache, "cpu": None, "default": None}
    BACKEND_DEVICE_COUNT = {"cuda": torch.cuda.device_count, "cpu": lambda: 0, "default": lambda: 1}


def backend_manual_seed(device: str, seed: int):
    return _device_agnostic_dispatch(device, BACKEND_MANUAL_SEED, seed)


def backend_empty_cache(device: str):
    return _device_agnostic_dispatch(device, BACKEND_EMPTY_CACHE)


def backend_device_count(device: str):
    return _device_agnostic_dispatch(device, BACKEND_DEVICE_COUNT)


if is_torch_available():
    # If `TRANSFORMERS_TEST_DEVICE_SPEC` is enabled we need to import extra entries
    # into device to function mappings.
    if "TRANSFORMERS_TEST_DEVICE_SPEC" in os.environ:
        device_spec_path = os.environ["TRANSFORMERS_TEST_DEVICE_SPEC"]
        if not Path(device_spec_path).is_file():
            raise ValueError(
                f"Specified path to device spec file is not a file or not found. Received '{device_spec_path}"
            )

        # Try to strip extension for later import – also verifies we are importing a
        # python file.
        try:
            import_name = device_spec_path[: device_spec_path.index(".py")]
        except ValueError as e:
            raise ValueError(f"Provided device spec file was not a Python file! Received '{device_spec_path}") from e

        device_spec_module = importlib.import_module(import_name)

        # Imported file must contain `DEVICE_NAME`. If it doesn't, terminate early.
        try:
            device_name = device_spec_module.DEVICE_NAME
        except AttributeError as e:
            raise AttributeError("Device spec file did not contain `DEVICE_NAME`") from e

        if "TRANSFORMERS_TEST_DEVICE" in os.environ and torch_device != device_name:
            msg = f"Mismatch between environment variable `TRANSFORMERS_TEST_DEVICE` '{torch_device}' and device found in spec '{device_name}'\n"
            msg += "Either unset `TRANSFORMERS_TEST_DEVICE` or ensure it matches device spec name."
            raise ValueError(msg)

        torch_device = device_name

        def update_mapping_from_spec(device_fn_dict: Dict[str, Callable], attribute_name: str):
            try:
                # Try to import the function directly
                spec_fn = getattr(device_spec_module, attribute_name)
                device_fn_dict[torch_device] = spec_fn
            except AttributeError as e:
                # If the function doesn't exist, and there is no default, throw an error
                if "default" not in device_fn_dict:
                    raise AttributeError(
                        f"`{attribute_name}` not found in '{device_spec_path}' and no default fallback function found."
                    ) from e

        # Add one entry here for each `BACKEND_*` dictionary.
        update_mapping_from_spec(BACKEND_MANUAL_SEED, "MANUAL_SEED_FN")
        update_mapping_from_spec(BACKEND_EMPTY_CACHE, "EMPTY_CACHE_FN")
        update_mapping_from_spec(BACKEND_DEVICE_COUNT, "DEVICE_COUNT_FN")