testing_utils.py 45.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import inspect
17
import logging
18
import os
19
import re
20
import shutil
21
import sys
22
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
23
import unittest
24
from distutils.util import strtobool
25
from io import StringIO
26
from pathlib import Path
27
from typing import Iterator, Union
28
from unittest import mock
29

30
31
from transformers import logging as transformers_logging

32
from .deepspeed import is_deepspeed_available
33
from .file_utils import (
34
    is_datasets_available,
35
    is_detectron2_available,
36
37
    is_faiss_available,
    is_flax_available,
38
    is_keras2onnx_available,
39
    is_onnx_available,
40
    is_pandas_available,
41
    is_pytesseract_available,
42
    is_pytorch_quantization_available,
yujun's avatar
yujun committed
43
    is_rjieba_available,
44
45
    is_scatter_available,
    is_sentencepiece_available,
Patrick von Platen's avatar
Patrick von Platen committed
46
    is_soundfile_availble,
Kamal Raj's avatar
Kamal Raj committed
47
    is_tensorflow_probability_available,
48
    is_tf_available,
NielsRogge's avatar
NielsRogge committed
49
    is_timm_available,
50
51
    is_tokenizers_available,
    is_torch_available,
52
    is_torch_bf16_available,
53
    is_torch_tf32_available,
54
    is_torch_tpu_available,
Suraj Patil's avatar
Suraj Patil committed
55
    is_torchaudio_available,
56
    is_vision_available,
57
)
58
from .integrations import is_optuna_available, is_ray_available, is_sigopt_available
59
60


Julien Chaumond's avatar
Julien Chaumond committed
61
SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy"
62
DUMMY_UNKNOWN_IDENTIFIER = "julien-c/dummy-unknown"
63
DUMMY_DIFF_TOKENIZER_IDENTIFIER = "julien-c/dummy-diff-tokenizer"
Julien Chaumond's avatar
Julien Chaumond committed
64
# Used to test Auto{Config, Model, Tokenizer} model_type detection.
Julien Chaumond's avatar
Julien Chaumond committed
65

Sylvain Gugger's avatar
Sylvain Gugger committed
66
67
68
69
70
# Used to test the hub
USER = "__DUMMY_TRANSFORMERS_USER__"
PASS = "__DUMMY_TRANSFORMERS_PASS__"
ENDPOINT_STAGING = "https://moon-staging.huggingface.co"

Julien Chaumond's avatar
Julien Chaumond committed
71

72
def parse_flag_from_env(key, default=False):
73
    try:
74
75
76
77
78
79
80
81
82
83
        value = os.environ[key]
    except KeyError:
        # KEY isn't set, default to `default`.
        _value = default
    else:
        # KEY is set, convert it to True or False.
        try:
            _value = strtobool(value)
        except ValueError:
            # More values are supported, but let's keep the message simple.
84
            raise ValueError(f"If set, {key} must be yes or no.")
85
86
    return _value

87

Julien Chaumond's avatar
Julien Chaumond committed
88
89
90
91
92
93
94
95
96
def parse_int_from_env(key, default=None):
    try:
        value = os.environ[key]
    except KeyError:
        _value = default
    else:
        try:
            _value = int(value)
        except ValueError:
97
            raise ValueError(f"If set, {key} must be a int.")
Julien Chaumond's avatar
Julien Chaumond committed
98
99
100
    return _value


101
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
102
_run_pt_tf_cross_tests = parse_flag_from_env("RUN_PT_TF_CROSS_TESTS", default=False)
103
_run_pt_flax_cross_tests = parse_flag_from_env("RUN_PT_FLAX_CROSS_TESTS", default=False)
104
_run_custom_tokenizers = parse_flag_from_env("RUN_CUSTOM_TOKENIZERS", default=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
105
_run_staging = parse_flag_from_env("HUGGINGFACE_CO_STAGING", default=False)
106
_run_pipeline_tests = parse_flag_from_env("RUN_PIPELINE_TESTS", default=False)
107
_run_git_lfs_tests = parse_flag_from_env("RUN_GIT_LFS_TESTS", default=False)
Julien Chaumond's avatar
Julien Chaumond committed
108
_tf_gpu_memory_limit = parse_int_from_env("TF_GPU_MEMORY_LIMIT", default=None)
109
110


111
112
113
114
115
116
117
118
def is_pt_tf_cross_test(test_case):
    """
    Decorator marking a test as a test that control interactions between PyTorch and TensorFlow.

    PT+TF tests are skipped by default and we can run only them by setting RUN_PT_TF_CROSS_TESTS environment variable
    to a truthy value and selecting the is_pt_tf_cross_test pytest mark.

    """
119
    if not _run_pt_tf_cross_tests or not is_torch_available() or not is_tf_available():
120
121
122
123
124
125
126
127
128
129
        return unittest.skip("test is PT+TF test")(test_case)
    else:
        try:
            import pytest  # We don't need a hard dependency on pytest in the main library
        except ImportError:
            return test_case
        else:
            return pytest.mark.is_pt_tf_cross_test()(test_case)


130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def is_pt_flax_cross_test(test_case):
    """
    Decorator marking a test as a test that control interactions between PyTorch and Flax

    PT+FLAX tests are skipped by default and we can run only them by setting RUN_PT_FLAX_CROSS_TESTS environment
    variable to a truthy value and selecting the is_pt_flax_cross_test pytest mark.

    """
    if not _run_pt_flax_cross_tests or not is_torch_available() or not is_flax_available():
        return unittest.skip("test is PT+FLAX test")(test_case)
    else:
        try:
            import pytest  # We don't need a hard dependency on pytest in the main library
        except ImportError:
            return test_case
        else:
            return pytest.mark.is_pt_flax_cross_test()(test_case)


149
150
151
152
def is_pipeline_test(test_case):
    """
    Decorator marking a test as a pipeline test.

153
154
    Pipeline tests are skipped by default and we can run only them by setting RUN_PIPELINE_TESTS environment variable
    to a truthy value and selecting the is_pipeline_test pytest mark.
155
156
157
158
159
160
161
162
163
164
165
166
167

    """
    if not _run_pipeline_tests:
        return unittest.skip("test is pipeline test")(test_case)
    else:
        try:
            import pytest  # We don't need a hard dependency on pytest in the main library
        except ImportError:
            return test_case
        else:
            return pytest.mark.is_pipeline_test()(test_case)


Sylvain Gugger's avatar
Sylvain Gugger committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def is_staging_test(test_case):
    """
    Decorator marking a test as a staging test.

    Those tests will run using the staging environment of huggingface.co instead of the real model hub.
    """
    if not _run_staging:
        return unittest.skip("test is staging test")(test_case)
    else:
        try:
            import pytest  # We don't need a hard dependency on pytest in the main library
        except ImportError:
            return test_case
        else:
            return pytest.mark.is_staging_test()(test_case)


185
186
187
188
def slow(test_case):
    """
    Decorator marking a test as slow.

Sylvain Gugger's avatar
Sylvain Gugger committed
189
    Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
190
191
192

    """
    if not _run_slow_tests:
193
194
195
        return unittest.skip("test is slow")(test_case)
    else:
        return test_case
196
197


Lysandre Debut's avatar
Lysandre Debut committed
198
199
200
201
202
203
204
205
206
207
208
def tooslow(test_case):
    """
    Decorator marking a test as too slow.

    Slow tests are skipped while they're in the process of being fixed. No test should stay tagged as "tooslow" as
    these will not be tested by the CI.

    """
    return unittest.skip("test is too slow")(test_case)


209
210
211
212
def custom_tokenizers(test_case):
    """
    Decorator marking a test for a custom tokenizer.

Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
    Custom tokenizers require additional dependencies, and are skipped by default. Set the RUN_CUSTOM_TOKENIZERS
    environment variable to a truthy value to run them.
215
216
    """
    if not _run_custom_tokenizers:
217
218
219
        return unittest.skip("test of custom tokenizers")(test_case)
    else:
        return test_case
220
221


222
223
224
225
226
227
228
229
230
231
232
233
234
def require_git_lfs(test_case):
    """
    Decorator marking a test that requires git-lfs.

    git-lfs requires additional dependencies, and tests are skipped by default. Set the RUN_GIT_LFS_TESTS environment
    variable to a truthy value to run them.
    """
    if not _run_git_lfs_tests:
        return unittest.skip("test of git lfs workflow")(test_case)
    else:
        return test_case


yujun's avatar
yujun committed
235
236
237
238
239
240
241
242
243
244
def require_rjieba(test_case):
    """
    Decorator marking a test that requires rjieba. These tests are skipped when rjieba isn't installed.
    """
    if not is_rjieba_available():
        return unittest.skip("test requires rjieba")(test_case)
    else:
        return test_case


245
246
247
248
249
250
251
def require_keras2onnx(test_case):
    if not is_keras2onnx_available():
        return unittest.skip("test requires keras2onnx")(test_case)
    else:
        return test_case


252
253
254
255
256
257
258
def require_onnx(test_case):
    if not is_onnx_available():
        return unittest.skip("test requires ONNX")(test_case)
    else:
        return test_case


NielsRogge's avatar
NielsRogge committed
259
260
261
262
263
264
265
266
267
268
269
270
271
def require_timm(test_case):
    """
    Decorator marking a test that requires Timm.

    These tests are skipped when Timm isn't installed.

    """
    if not is_timm_available():
        return unittest.skip("test requires Timm")(test_case)
    else:
        return test_case


272
273
274
275
276
277
278
def require_torch(test_case):
    """
    Decorator marking a test that requires PyTorch.

    These tests are skipped when PyTorch isn't installed.

    """
279
    if not is_torch_available():
280
281
282
        return unittest.skip("test requires PyTorch")(test_case)
    else:
        return test_case
283
284


285
286
287
288
289
290
291
def require_torch_scatter(test_case):
    """
    Decorator marking a test that requires PyTorch scatter.

    These tests are skipped when PyTorch scatter isn't installed.

    """
292
    if not is_scatter_available():
293
294
        return unittest.skip("test requires PyTorch scatter")(test_case)
    else:
Suraj Patil's avatar
Suraj Patil committed
295
296
297
        return test_case


Kamal Raj's avatar
Kamal Raj committed
298
299
300
301
302
303
304
305
306
307
308
309
310
def require_tensorflow_probability(test_case):
    """
    Decorator marking a test that requires TensorFlow probability.

    These tests are skipped when TensorFlow probability isn't installed.

    """
    if not is_tensorflow_probability_available():
        return unittest.skip("test requires TensorFlow probability")(test_case)
    else:
        return test_case


Suraj Patil's avatar
Suraj Patil committed
311
312
def require_torchaudio(test_case):
    """
313
    Decorator marking a test that requires torchaudio. These tests are skipped when torchaudio isn't installed.
Suraj Patil's avatar
Suraj Patil committed
314
    """
315
    if not is_torchaudio_available():
Suraj Patil's avatar
Suraj Patil committed
316
317
        return unittest.skip("test requires torchaudio")(test_case)
    else:
318
319
320
        return test_case


321
322
def require_tf(test_case):
    """
323
    Decorator marking a test that requires TensorFlow. These tests are skipped when TensorFlow isn't installed.
324
    """
325
    if not is_tf_available():
326
327
328
        return unittest.skip("test requires TensorFlow")(test_case)
    else:
        return test_case
329
330


331
332
def require_flax(test_case):
    """
333
    Decorator marking a test that requires JAX & Flax. These tests are skipped when one / both are not installed
334
    """
335
    if not is_flax_available():
336
337
338
339
        test_case = unittest.skip("test requires JAX & Flax")(test_case)
    return test_case


340
341
def require_sentencepiece(test_case):
    """
342
    Decorator marking a test that requires SentencePiece. These tests are skipped when SentencePiece isn't installed.
343
    """
344
    if not is_sentencepiece_available():
345
346
347
348
349
350
351
        return unittest.skip("test requires SentencePiece")(test_case)
    else:
        return test_case


def require_tokenizers(test_case):
    """
352
    Decorator marking a test that requires 🤗 Tokenizers. These tests are skipped when 🤗 Tokenizers isn't installed.
353
    """
354
    if not is_tokenizers_available():
355
356
357
358
359
        return unittest.skip("test requires tokenizers")(test_case)
    else:
        return test_case


NielsRogge's avatar
NielsRogge committed
360
361
362
363
def require_pandas(test_case):
    """
    Decorator marking a test that requires pandas. These tests are skipped when pandas isn't installed.
    """
364
    if not is_pandas_available():
NielsRogge's avatar
NielsRogge committed
365
366
367
368
369
        return unittest.skip("test requires pandas")(test_case)
    else:
        return test_case


370
371
372
373
374
375
376
377
378
379
def require_pytesseract(test_case):
    """
    Decorator marking a test that requires PyTesseract. These tests are skipped when PyTesseract isn't installed.
    """
    if not is_pytesseract_available():
        return unittest.skip("test requires PyTesseract")(test_case)
    else:
        return test_case


NielsRogge's avatar
NielsRogge committed
380
381
382
383
384
def require_scatter(test_case):
    """
    Decorator marking a test that requires PyTorch Scatter. These tests are skipped when PyTorch Scatter isn't
    installed.
    """
385
    if not is_scatter_available():
NielsRogge's avatar
NielsRogge committed
386
387
388
389
390
        return unittest.skip("test requires PyTorch Scatter")(test_case)
    else:
        return test_case


391
392
393
394
395
396
397
398
399
400
401
def require_pytorch_quantization(test_case):
    """
    Decorator marking a test that requires PyTorch Quantization Toolkit. These tests are skipped when PyTorch
    Quantization Toolkit isn't installed.
    """
    if not is_pytorch_quantization_available():
        return unittest.skip("test requires PyTorch Quantization Toolkit")(test_case)
    else:
        return test_case


402
def require_vision(test_case):
403
    """
404
405
406
407
408
409
410
411
    Decorator marking a test that requires the vision dependencies. These tests are skipped when torchaudio isn't
    installed.
    """
    if not is_vision_available():
        return unittest.skip("test requires vision")(test_case)
    else:
        return test_case

412

413
414
415
416
def require_torch_multi_gpu(test_case):
    """
    Decorator marking a test that requires a multi-GPU setup (in PyTorch). These tests are skipped on a machine without
    multiple GPUs.
417

418
    To run *only* the multi_gpu tests, assuming all test names contain multi_gpu: $ pytest -sv ./tests -k "multi_gpu"
419
    """
420
    if not is_torch_available():
421
422
423
424
425
426
        return unittest.skip("test requires PyTorch")(test_case)

    import torch

    if torch.cuda.device_count() < 2:
        return unittest.skip("test requires multiple GPUs")(test_case)
427
428
    else:
        return test_case
429
430


431
def require_torch_non_multi_gpu(test_case):
432
433
434
    """
    Decorator marking a test that requires 0 or 1 GPU setup (in PyTorch).
    """
435
    if not is_torch_available():
436
437
438
439
440
441
        return unittest.skip("test requires PyTorch")(test_case)

    import torch

    if torch.cuda.device_count() > 1:
        return unittest.skip("test requires 0 or 1 GPU")(test_case)
442
443
    else:
        return test_case
444
445


446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
def require_torch_up_to_2_gpus(test_case):
    """
    Decorator marking a test that requires 0 or 1 or 2 GPU setup (in PyTorch).
    """
    if not is_torch_available():
        return unittest.skip("test requires PyTorch")(test_case)

    import torch

    if torch.cuda.device_count() > 2:
        return unittest.skip("test requires 0 or 1 or 2 GPUs")(test_case)
    else:
        return test_case


Lysandre Debut's avatar
Lysandre Debut committed
461
462
463
464
def require_torch_tpu(test_case):
    """
    Decorator marking a test that requires a TPU (in PyTorch).
    """
465
    if not is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
466
        return unittest.skip("test requires PyTorch TPU")
467
468
    else:
        return test_case
Lysandre Debut's avatar
Lysandre Debut committed
469
470


471
if is_torch_available():
Stas Bekman's avatar
Stas Bekman committed
472
473
474
475
    # Set env var CUDA_VISIBLE_DEVICES="" to force cpu-mode
    import torch

    torch_device = "cuda" if torch.cuda.is_available() else "cpu"
476
477
else:
    torch_device = None
478

479
480
481
if is_tf_available():
    import tensorflow as tf

482
483
484
485
486
487
488
if is_flax_available():
    import jax

    jax_device = jax.default_backend()
else:
    jax_device = None

489

490
def require_torch_gpu(test_case):
Patrick von Platen's avatar
Patrick von Platen committed
491
    """Decorator marking a test that requires CUDA and PyTorch."""
492
    if torch_device != "cuda":
493
        return unittest.skip("test requires CUDA")(test_case)
494
495
    else:
        return test_case
496
497


498
def require_torch_bf16(test_case):
499
    """Decorator marking a test that requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.10."""
500
    if not is_torch_bf16_available():
501
502
503
504
505
506
507
508
509
        return unittest.skip("test requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.10")(test_case)
    else:
        return test_case


def require_torch_tf32(test_case):
    """Decorator marking a test that requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.7."""
    if not is_torch_tf32_available():
        return unittest.skip("test requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.7")(test_case)
510
511
512
513
    else:
        return test_case


Ola Piktus's avatar
Ola Piktus committed
514
515
516
def require_datasets(test_case):
    """Decorator marking a test that requires datasets."""

517
    if not is_datasets_available():
518
519
520
        return unittest.skip("test requires `datasets`")(test_case)
    else:
        return test_case
Ola Piktus's avatar
Ola Piktus committed
521
522


523
524
525
526
527
528
529
530
def require_detectron2(test_case):
    """Decorator marking a test that requires detectron2."""
    if not is_detectron2_available():
        return unittest.skip("test requires `detectron2`")(test_case)
    else:
        return test_case


Ola Piktus's avatar
Ola Piktus committed
531
532
def require_faiss(test_case):
    """Decorator marking a test that requires faiss."""
533
    if not is_faiss_available():
534
535
536
        return unittest.skip("test requires `faiss`")(test_case)
    else:
        return test_case
Ola Piktus's avatar
Ola Piktus committed
537
538


539
540
541
542
543
544
545
def require_optuna(test_case):
    """
    Decorator marking a test that requires optuna.

    These tests are skipped when optuna isn't installed.

    """
546
    if not is_optuna_available():
547
548
549
550
551
552
553
554
555
556
557
558
        return unittest.skip("test requires optuna")(test_case)
    else:
        return test_case


def require_ray(test_case):
    """
    Decorator marking a test that requires Ray/tune.

    These tests are skipped when Ray/tune isn't installed.

    """
559
    if not is_ray_available():
560
561
562
563
564
        return unittest.skip("test requires Ray/tune")(test_case)
    else:
        return test_case


565
566
567
568
569
570
571
572
573
574
575
576
577
def require_sigopt(test_case):
    """
    Decorator marking a test that requires SigOpt.

    These tests are skipped when SigOpt isn't installed.

    """
    if not is_sigopt_available():
        return unittest.skip("test requires SigOpt")(test_case)
    else:
        return test_case


Patrick von Platen's avatar
Patrick von Platen committed
578
579
580
581
582
583
584
585
586
587
588
589
590
def require_soundfile(test_case):
    """
    Decorator marking a test that requires soundfile

    These tests are skipped when soundfile isn't installed.

    """
    if not is_soundfile_availble():
        return unittest.skip("test requires soundfile")(test_case)
    else:
        return test_case


591
592
593
594
595
596
597
598
599
600
def require_deepspeed(test_case):
    """
    Decorator marking a test that requires deepspeed
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)
    else:
        return test_case


601
602
603
604
def get_gpu_count():
    """
    Return the number of available gpus (regardless of whether torch or tf is used)
    """
605
    if is_torch_available():
606
607
608
        import torch

        return torch.cuda.device_count()
609
    elif is_tf_available():
610
611
612
613
614
615
616
        import tensorflow as tf

        return len(tf.config.list_physical_devices("GPU"))
    else:
        return 0


617
def get_tests_dir(append_path=None):
618
    """
619
620
621
622
    Args:
        append_path: optional path to append to the tests dir path

    Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
623
624
        The full path to the `tests` dir, so that the tests can be invoked from anywhere. Optionally `append_path` is
        joined after the `tests` dir the former is provided.
625

626
627
628
    """
    # this function caller's __file__
    caller__file__ = inspect.stack()[1][1]
629
630
631
632
633
    tests_dir = os.path.abspath(os.path.dirname(caller__file__))
    if append_path:
        return os.path.join(tests_dir, append_path)
    else:
        return tests_dir
634
635


636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
#
# Helper functions for dealing with testing text outputs
# The original code came from:
# https://github.com/fastai/fastai/blob/master/tests/utils/text.py

# When any function contains print() calls that get overwritten, like progress bars,
# a special care needs to be applied, since under pytest -s captured output (capsys
# or contextlib.redirect_stdout) contains any temporary printed strings, followed by
# \r's. This helper function ensures that the buffer will contain the same output
# with and without -s in pytest, by turning:
# foo bar\r tar mar\r final message
# into:
# final message
# it can handle a single string or a multiline buffer
def apply_print_resets(buf):
    return re.sub(r"^.*\r", "", buf, 0, re.M)


def assert_screenout(out, what):
    out_pr = apply_print_resets(out).lower()
    match_str = out_pr.find(what.lower())
    assert match_str != -1, f"expecting to find {what} in output: f{out_pr}"


class CaptureStd:
Sylvain Gugger's avatar
Sylvain Gugger committed
661
662
    """
    Context manager to capture:
663

664
665
        - stdout: replay it, clean it up and make it available via ``obj.out``
        - stderr: replay it and make it available via ``obj.err``
666
667
668

        init arguments:

669
670
671
672
673
        - out - capture stdout:`` True``/``False``, default ``True``
        - err - capture stdout: ``True``/``False``, default ``True``
        - replay - whether to replay or not: ``True``/``False``, default ``True``. By default each
        captured stream gets replayed back on context's exit, so that one can see what the test was doing. If this is a
        not wanted behavior and the captured data shouldn't be replayed, pass ``replay=False`` to disable this feature.
674

Sylvain Gugger's avatar
Sylvain Gugger committed
675
        Examples::
676

677
            # to capture stdout only with auto-replay
Sylvain Gugger's avatar
Sylvain Gugger committed
678
679
            with CaptureStdout() as cs:
                print("Secret message")
680
            assert "message" in cs.out
681

682
            # to capture stderr only with auto-replay
Sylvain Gugger's avatar
Sylvain Gugger committed
683
684
685
            import sys
            with CaptureStderr() as cs:
                print("Warning: ", file=sys.stderr)
686
            assert "Warning" in cs.err
687

688
689
690
691
692
693
694
695
            # to capture both streams with auto-replay
            with CaptureStd() as cs:
                print("Secret message")
                print("Warning: ", file=sys.stderr)
            assert "message" in cs.out
            assert "Warning" in cs.err

            # to capture just one of the streams, and not the other, with auto-replay
Sylvain Gugger's avatar
Sylvain Gugger committed
696
697
            with CaptureStd(err=False) as cs:
                print("Secret message")
698
            assert "message" in cs.out
Sylvain Gugger's avatar
Sylvain Gugger committed
699
            # but best use the stream-specific subclasses
700

701
702
703
704
705
            # to capture without auto-replay
            with CaptureStd(replay=False) as cs:
                print("Secret message")
            assert "message" in cs.out

706
707
    """

708
709
710
711
    def __init__(self, out=True, err=True, replay=True):

        self.replay = replay

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
        if out:
            self.out_buf = StringIO()
            self.out = "error: CaptureStd context is unfinished yet, called too early"
        else:
            self.out_buf = None
            self.out = "not capturing stdout"

        if err:
            self.err_buf = StringIO()
            self.err = "error: CaptureStd context is unfinished yet, called too early"
        else:
            self.err_buf = None
            self.err = "not capturing stderr"

    def __enter__(self):
        if self.out_buf:
            self.out_old = sys.stdout
            sys.stdout = self.out_buf

        if self.err_buf:
            self.err_old = sys.stderr
            sys.stderr = self.err_buf

        return self

    def __exit__(self, *exc):
        if self.out_buf:
            sys.stdout = self.out_old
740
741
742
743
            captured = self.out_buf.getvalue()
            if self.replay:
                sys.stdout.write(captured)
            self.out = apply_print_resets(captured)
744
745
746

        if self.err_buf:
            sys.stderr = self.err_old
747
748
749
750
            captured = self.err_buf.getvalue()
            if self.replay:
                sys.stderr.write(captured)
            self.err = captured
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

    def __repr__(self):
        msg = ""
        if self.out_buf:
            msg += f"stdout: {self.out}\n"
        if self.err_buf:
            msg += f"stderr: {self.err}\n"
        return msg


# in tests it's the best to capture only the stream that's wanted, otherwise
# it's easy to miss things, so unless you need to capture both streams, use the
# subclasses below (less typing). Or alternatively, configure `CaptureStd` to
# disable the stream you don't need to test.


class CaptureStdout(CaptureStd):
Patrick von Platen's avatar
Patrick von Platen committed
768
    """Same as CaptureStd but captures only stdout"""
769

770
771
    def __init__(self, replay=True):
        super().__init__(err=False, replay=replay)
772
773
774


class CaptureStderr(CaptureStd):
Patrick von Platen's avatar
Patrick von Platen committed
775
    """Same as CaptureStd but captures only stderr"""
776

777
778
    def __init__(self, replay=True):
        super().__init__(out=False, replay=replay)
779
780


781
class CaptureLogger:
Sylvain Gugger's avatar
Sylvain Gugger committed
782
783
    """
    Context manager to capture `logging` streams
784
785

    Args:
786

787
788
789
790
791
    - logger: 'logging` logger object

    Results:
        The captured output is available via `self.out`

792
    Example::
793

794
795
        >>> from transformers import logging
        >>> from transformers.testing_utils import CaptureLogger
796

797
798
        >>> msg = "Testing 1, 2, 3"
        >>> logging.set_verbosity_info()
799
        >>> logger = logging.get_logger("transformers.models.bart.tokenization_bart")
800
801
802
        >>> with CaptureLogger(logger) as cl:
        ...     logger.info(msg)
        >>> assert cl.out, msg+"\n"
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    """

    def __init__(self, logger):
        self.logger = logger
        self.io = StringIO()
        self.sh = logging.StreamHandler(self.io)
        self.out = ""

    def __enter__(self):
        self.logger.addHandler(self.sh)
        return self

    def __exit__(self, *exc):
        self.logger.removeHandler(self.sh)
        self.out = self.io.getvalue()

    def __repr__(self):
        return f"captured: {self.out}\n"


823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
@contextlib.contextmanager
def LoggingLevel(level):
    """
    This is a context manager to temporarily change transformers modules logging level to the desired value and have it
    restored to the original setting at the end of the scope.

    For example ::

        with LoggingLevel(logging.INFO):
            AutoModel.from_pretrained("gpt2") # calls logger.info() several times

    """
    orig_level = transformers_logging.get_verbosity()
    try:
        transformers_logging.set_verbosity(level)
        yield
    finally:
        transformers_logging.set_verbosity(orig_level)


843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
@contextlib.contextmanager
# adapted from https://stackoverflow.com/a/64789046/9201239
def ExtendSysPath(path: Union[str, os.PathLike]) -> Iterator[None]:
    """
    Temporary add given path to `sys.path`.

    Usage ::

       with ExtendSysPath('/path/to/dir'):
           mymodule = importlib.import_module('mymodule')

    """

    path = os.fspath(path)
    try:
        sys.path.insert(0, path)
        yield
    finally:
        sys.path.remove(path)


864
class TestCasePlus(unittest.TestCase):
Sylvain Gugger's avatar
Sylvain Gugger committed
865
866
    """
    This class extends `unittest.TestCase` with additional features.
867

868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
    Feature 1: A set of fully resolved important file and dir path accessors.

    In tests often we need to know where things are relative to the current test file, and it's not trivial since the
    test could be invoked from more than one directory or could reside in sub-directories with different depths. This
    class solves this problem by sorting out all the basic paths and provides easy accessors to them:

    * ``pathlib`` objects (all fully resolved):

       - ``test_file_path`` - the current test file path (=``__file__``)
       - ``test_file_dir`` - the directory containing the current test file
       - ``tests_dir`` - the directory of the ``tests`` test suite
       - ``examples_dir`` - the directory of the ``examples`` test suite
       - ``repo_root_dir`` - the directory of the repository
       - ``src_dir`` - the directory of ``src`` (i.e. where the ``transformers`` sub-dir resides)

    * stringified paths---same as above but these return paths as strings, rather than ``pathlib`` objects:

       - ``test_file_path_str``
       - ``test_file_dir_str``
       - ``tests_dir_str``
       - ``examples_dir_str``
       - ``repo_root_dir_str``
       - ``src_dir_str``

892
    Feature 2: Flexible auto-removable temporary dirs which are guaranteed to get removed at the end of test.
893

894
    1. Create a unique temporary dir:
895
896
897
898
899

    ::

        def test_whatever(self):
            tmp_dir = self.get_auto_remove_tmp_dir()
900

901
902
903
904
905
906
    ``tmp_dir`` will contain the path to the created temporary dir. It will be automatically removed at the end of the
    test.


    2. Create a temporary dir of my choice, ensure it's empty before the test starts and don't
    empty it after the test.
907
908
909
910

    ::

        def test_whatever(self):
911
            tmp_dir = self.get_auto_remove_tmp_dir("./xxx")
912

913
914
    This is useful for debug when you want to monitor a specific directory and want to make sure the previous tests
    didn't leave any data in there.
915

916
917
    3. You can override the first two options by directly overriding the ``before`` and ``after`` args, leading to the
       following behavior:
918

919
    ``before=True``: the temporary dir will always be cleared at the beginning of the test.
920

921
    ``before=False``: if the temporary dir already existed, any existing files will remain there.
922

923
924
925
    ``after=True``: the temporary dir will always be deleted at the end of the test.

    ``after=False``: the temporary dir will always be left intact at the end of the test.
926

927
928
929
    Note 1: In order to run the equivalent of ``rm -r`` safely, only subdirs of the project repository checkout are
    allowed if an explicit ``tmp_dir`` is used, so that by mistake no ``/tmp`` or similar important part of the
    filesystem will get nuked. i.e. please always pass paths that start with ``./``
930

931
932
    Note 2: Each test can register multiple temporary dirs and they all will get auto-removed, unless requested
    otherwise.
933

934
935
936
937
938
939
940
941
    Feature 3: Get a copy of the ``os.environ`` object that sets up ``PYTHONPATH`` specific to the current test suite.
    This is useful for invoking external programs from the test suite - e.g. distributed training.


    ::
        def test_whatever(self):
            env = self.get_env()

942
943
944
    """

    def setUp(self):
945
        # get_auto_remove_tmp_dir feature:
946
947
        self.teardown_tmp_dirs = []

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        # figure out the resolved paths for repo_root, tests, examples, etc.
        self._test_file_path = inspect.getfile(self.__class__)
        path = Path(self._test_file_path).resolve()
        self._test_file_dir = path.parents[0]
        for up in [1, 2, 3]:
            tmp_dir = path.parents[up]
            if (tmp_dir / "src").is_dir() and (tmp_dir / "tests").is_dir():
                break
        if tmp_dir:
            self._repo_root_dir = tmp_dir
        else:
            raise ValueError(f"can't figure out the root of the repo from {self._test_file_path}")
        self._tests_dir = self._repo_root_dir / "tests"
        self._examples_dir = self._repo_root_dir / "examples"
        self._src_dir = self._repo_root_dir / "src"

    @property
    def test_file_path(self):
        return self._test_file_path

    @property
    def test_file_path_str(self):
        return str(self._test_file_path)

    @property
    def test_file_dir(self):
        return self._test_file_dir

    @property
    def test_file_dir_str(self):
        return str(self._test_file_dir)

    @property
    def tests_dir(self):
        return self._tests_dir

    @property
    def tests_dir_str(self):
        return str(self._tests_dir)

    @property
    def examples_dir(self):
        return self._examples_dir

    @property
    def examples_dir_str(self):
        return str(self._examples_dir)

    @property
    def repo_root_dir(self):
        return self._repo_root_dir

    @property
    def repo_root_dir_str(self):
        return str(self._repo_root_dir)

    @property
    def src_dir(self):
        return self._src_dir

    @property
    def src_dir_str(self):
        return str(self._src_dir)

    def get_env(self):
        """
        Return a copy of the ``os.environ`` object that sets up ``PYTHONPATH`` correctly, depending on the test suite
        it's invoked from. This is useful for invoking external programs from the test suite - e.g. distributed
        training.

        It always inserts ``./src`` first, then ``./tests`` or ``./examples`` depending on the test suite type and
        finally the preset ``PYTHONPATH`` if any (all full resolved paths).

        """
        env = os.environ.copy()
        paths = [self.src_dir_str]
        if "/examples" in self.test_file_dir_str:
            paths.append(self.examples_dir_str)
        else:
            paths.append(self.tests_dir_str)
        paths.append(env.get("PYTHONPATH", ""))

        env["PYTHONPATH"] = ":".join(paths)
        return env

1033
    def get_auto_remove_tmp_dir(self, tmp_dir=None, before=None, after=None):
1034
1035
        """
        Args:
1036
            tmp_dir (:obj:`string`, `optional`):
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
                if :obj:`None`:

                   - a unique temporary path will be created
                   - sets ``before=True`` if ``before`` is :obj:`None`
                   - sets ``after=True`` if ``after`` is :obj:`None`
                else:

                   - :obj:`tmp_dir` will be created
                   - sets ``before=True`` if ``before`` is :obj:`None`
                   - sets ``after=False`` if ``after`` is :obj:`None`
            before (:obj:`bool`, `optional`):
                If :obj:`True` and the :obj:`tmp_dir` already exists, make sure to empty it right away if :obj:`False`
                and the :obj:`tmp_dir` already exists, any existing files will remain there.
            after (:obj:`bool`, `optional`):
                If :obj:`True`, delete the :obj:`tmp_dir` at the end of the test if :obj:`False`, leave the
                :obj:`tmp_dir` and its contents intact at the end of the test.
1053
1054

        Returns:
1055
            tmp_dir(:obj:`string`): either the same value as passed via `tmp_dir` or the path to the auto-selected tmp
Sylvain Gugger's avatar
Sylvain Gugger committed
1056
            dir
1057
1058
        """
        if tmp_dir is not None:
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

            # defining the most likely desired behavior for when a custom path is provided.
            # this most likely indicates the debug mode where we want an easily locatable dir that:
            # 1. gets cleared out before the test (if it already exists)
            # 2. is left intact after the test
            if before is None:
                before = True
            if after is None:
                after = False

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
            # using provided path
            path = Path(tmp_dir).resolve()

            # to avoid nuking parts of the filesystem, only relative paths are allowed
            if not tmp_dir.startswith("./"):
                raise ValueError(
                    f"`tmp_dir` can only be a relative path, i.e. `./some/path`, but received `{tmp_dir}`"
                )

            # ensure the dir is empty to start with
            if before is True and path.exists():
                shutil.rmtree(tmp_dir, ignore_errors=True)

            path.mkdir(parents=True, exist_ok=True)

        else:
1085
1086
1087
1088
1089
1090
1091
1092
1093
            # defining the most likely desired behavior for when a unique tmp path is auto generated
            # (not a debug mode), here we require a unique tmp dir that:
            # 1. is empty before the test (it will be empty in this situation anyway)
            # 2. gets fully removed after the test
            if before is None:
                before = True
            if after is None:
                after = True

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
            # using unique tmp dir (always empty, regardless of `before`)
            tmp_dir = tempfile.mkdtemp()

        if after is True:
            # register for deletion
            self.teardown_tmp_dirs.append(tmp_dir)

        return tmp_dir

    def tearDown(self):
1104
1105

        # get_auto_remove_tmp_dir feature: remove registered temp dirs
1106
1107
1108
        for path in self.teardown_tmp_dirs:
            shutil.rmtree(path, ignore_errors=True)
        self.teardown_tmp_dirs = []
1109
1110
1111


def mockenv(**kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
1112
    """
1113
1114
1115
1116
1117
1118
    this is a convenience wrapper, that allows this ::

    @mockenv(RUN_SLOW=True, USE_TF=False)
    def test_something():
        run_slow = os.getenv("RUN_SLOW", False)
        use_tf = os.getenv("USE_TF", False)
1119
1120

    """
1121
    return mock.patch.dict(os.environ, kwargs)
1122
1123


1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
# from https://stackoverflow.com/a/34333710/9201239
@contextlib.contextmanager
def mockenv_context(*remove, **update):
    """
    Temporarily updates the ``os.environ`` dictionary in-place. Similar to mockenv

    The ``os.environ`` dictionary is updated in-place so that the modification is sure to work in all situations.

    Args:
      remove: Environment variables to remove.
      update: Dictionary of environment variables and values to add/update.
    """
    env = os.environ
    update = update or {}
    remove = remove or []

    # List of environment variables being updated or removed.
    stomped = (set(update.keys()) | set(remove)) & set(env.keys())
    # Environment variables and values to restore on exit.
    update_after = {k: env[k] for k in stomped}
    # Environment variables and values to remove on exit.
    remove_after = frozenset(k for k in update if k not in env)

    try:
        env.update(update)
        [env.pop(k, None) for k in remove]
        yield
    finally:
        env.update(update_after)
        [env.pop(k) for k in remove_after]


1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
# --- pytest conf functions --- #

# to avoid multiple invocation from tests/conftest.py and examples/conftest.py - make sure it's called only once
pytest_opt_registered = {}


def pytest_addoption_shared(parser):
    """
    This function is to be called from `conftest.py` via `pytest_addoption` wrapper that has to be defined there.

    It allows loading both `conftest.py` files at once without causing a failure due to adding the same `pytest`
    option.

    """
    option = "--make-reports"
    if option not in pytest_opt_registered:
        parser.addoption(
            option,
            action="store",
            default=False,
            help="generate report files. The value of this option is used as a prefix to report names",
        )
        pytest_opt_registered[option] = 1


1181
1182
def pytest_terminal_summary_main(tr, id):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1183
1184
    Generate multiple reports at the end of test suite run - each report goes into a dedicated file in the current
    directory. The report files are prefixed with the test suite name.
1185
1186
1187

    This function emulates --duration and -rA pytest arguments.

Sylvain Gugger's avatar
Sylvain Gugger committed
1188
1189
    This function is to be called from `conftest.py` via `pytest_terminal_summary` wrapper that has to be defined
    there.
1190
1191

    Args:
1192

1193
    - tr: `terminalreporter` passed from `conftest.py`
1194
1195
    - id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is
      needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other.
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213

    NB: this functions taps into a private _pytest API and while unlikely, it could break should
    pytest do internal changes - also it calls default internal methods of terminalreporter which
    can be hijacked by various `pytest-` plugins and interfere.

    """
    from _pytest.config import create_terminal_writer

    if not len(id):
        id = "tests"

    config = tr.config
    orig_writer = config.get_terminal_writer()
    orig_tbstyle = config.option.tbstyle
    orig_reportchars = tr.reportchars

    dir = "reports"
    Path(dir).mkdir(parents=True, exist_ok=True)
Stas Bekman's avatar
Stas Bekman committed
1214
    report_files = {
1215
        k: f"{dir}/{id}_{k}.txt"
Stas Bekman's avatar
Stas Bekman committed
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
        for k in [
            "durations",
            "errors",
            "failures_long",
            "failures_short",
            "failures_line",
            "passes",
            "stats",
            "summary_short",
            "warnings",
        ]
    }
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

    # custom durations report
    # note: there is no need to call pytest --durations=XX to get this separate report
    # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/runner.py#L66
    dlist = []
    for replist in tr.stats.values():
        for rep in replist:
            if hasattr(rep, "duration"):
                dlist.append(rep)
    if dlist:
        dlist.sort(key=lambda x: x.duration, reverse=True)
        with open(report_files["durations"], "w") as f:
            durations_min = 0.05  # sec
            f.write("slowest durations\n")
            for i, rep in enumerate(dlist):
                if rep.duration < durations_min:
                    f.write(f"{len(dlist)-i} durations < {durations_min} secs were omitted")
                    break
                f.write(f"{rep.duration:02.2f}s {rep.when:<8} {rep.nodeid}\n")

Stas Bekman's avatar
Stas Bekman committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
    def summary_failures_short(tr):
        # expecting that the reports were --tb=long (default) so we chop them off here to the last frame
        reports = tr.getreports("failed")
        if not reports:
            return
        tr.write_sep("=", "FAILURES SHORT STACK")
        for rep in reports:
            msg = tr._getfailureheadline(rep)
            tr.write_sep("_", msg, red=True, bold=True)
            # chop off the optional leading extra frames, leaving only the last one
            longrepr = re.sub(r".*_ _ _ (_ ){10,}_ _ ", "", rep.longreprtext, 0, re.M | re.S)
            tr._tw.line(longrepr)
            # note: not printing out any rep.sections to keep the report short

1262
1263
1264
1265
    # use ready-made report funcs, we are just hijacking the filehandle to log to a dedicated file each
    # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/terminal.py#L814
    # note: some pytest plugins may interfere by hijacking the default `terminalreporter` (e.g.
    # pytest-instafail does that)
Stas Bekman's avatar
Stas Bekman committed
1266
1267
1268
1269

    # report failures with line/short/long styles
    config.option.tbstyle = "auto"  # full tb
    with open(report_files["failures_long"], "w") as f:
1270
1271
1272
        tr._tw = create_terminal_writer(config, f)
        tr.summary_failures()

Stas Bekman's avatar
Stas Bekman committed
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
    # config.option.tbstyle = "short" # short tb
    with open(report_files["failures_short"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        summary_failures_short(tr)

    config.option.tbstyle = "line"  # one line per error
    with open(report_files["failures_line"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_failures()

    with open(report_files["errors"], "w") as f:
1284
1285
1286
        tr._tw = create_terminal_writer(config, f)
        tr.summary_errors()

Stas Bekman's avatar
Stas Bekman committed
1287
    with open(report_files["warnings"], "w") as f:
1288
1289
1290
1291
        tr._tw = create_terminal_writer(config, f)
        tr.summary_warnings()  # normal warnings
        tr.summary_warnings()  # final warnings

Stas Bekman's avatar
Stas Bekman committed
1292
1293
    tr.reportchars = "wPpsxXEf"  # emulate -rA (used in summary_passes() and short_test_summary())
    with open(report_files["passes"], "w") as f:
1294
1295
1296
        tr._tw = create_terminal_writer(config, f)
        tr.summary_passes()

Stas Bekman's avatar
Stas Bekman committed
1297
    with open(report_files["summary_short"], "w") as f:
1298
1299
1300
        tr._tw = create_terminal_writer(config, f)
        tr.short_test_summary()

Stas Bekman's avatar
Stas Bekman committed
1301
    with open(report_files["stats"], "w") as f:
1302
1303
1304
1305
1306
1307
1308
        tr._tw = create_terminal_writer(config, f)
        tr.summary_stats()

    # restore:
    tr._tw = orig_writer
    tr.reportchars = orig_reportchars
    config.option.tbstyle = orig_tbstyle
1309
1310


1311
# --- distributed testing functions --- #
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

# adapted from https://stackoverflow.com/a/59041913/9201239
import asyncio  # noqa


class _RunOutput:
    def __init__(self, returncode, stdout, stderr):
        self.returncode = returncode
        self.stdout = stdout
        self.stderr = stderr


async def _read_stream(stream, callback):
    while True:
        line = await stream.readline()
        if line:
            callback(line)
        else:
            break


async def _stream_subprocess(cmd, env=None, stdin=None, timeout=None, quiet=False, echo=False) -> _RunOutput:
    if echo:
        print("\nRunning: ", " ".join(cmd))

    p = await asyncio.create_subprocess_exec(
        cmd[0],
        *cmd[1:],
        stdin=stdin,
        stdout=asyncio.subprocess.PIPE,
        stderr=asyncio.subprocess.PIPE,
        env=env,
    )

    # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
    # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
    #
    # If it starts hanging, will need to switch to the following code. The problem is that no data
    # will be seen until it's done and if it hangs for example there will be no debug info.
    # out, err = await p.communicate()
    # return _RunOutput(p.returncode, out, err)

    out = []
    err = []

    def tee(line, sink, pipe, label=""):
        line = line.decode("utf-8").rstrip()
        sink.append(line)
        if not quiet:
            print(label, line, file=pipe)

    # XXX: the timeout doesn't seem to make any difference here
    await asyncio.wait(
        [
Stas Bekman's avatar
Stas Bekman committed
1366
            _read_stream(p.stdout, lambda l: tee(l, out, sys.stdout, label="stdout:")),
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
            _read_stream(p.stderr, lambda l: tee(l, err, sys.stderr, label="stderr:")),
        ],
        timeout=timeout,
    )
    return _RunOutput(await p.wait(), out, err)


def execute_subprocess_async(cmd, env=None, stdin=None, timeout=180, quiet=False, echo=True) -> _RunOutput:

    loop = asyncio.get_event_loop()
    result = loop.run_until_complete(
        _stream_subprocess(cmd, env=env, stdin=stdin, timeout=timeout, quiet=quiet, echo=echo)
    )

    cmd_str = " ".join(cmd)
    if result.returncode > 0:
1383
        stderr = "\n".join(result.stderr)
1384
        raise RuntimeError(
1385
1386
            f"'{cmd_str}' failed with returncode {result.returncode}\n\n"
            f"The combined stderr from workers follows:\n{stderr}"
1387
        )
Stas Bekman's avatar
Stas Bekman committed
1388
1389
1390
1391

    # check that the subprocess actually did run and produced some output, should the test rely on
    # the remote side to do the testing
    if not result.stdout and not result.stderr:
1392
1393
1394
        raise RuntimeError(f"'{cmd_str}' produced no output.")

    return result
1395
1396


1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
def pytest_xdist_worker_id():
    """
    Returns an int value of worker's numerical id under ``pytest-xdist``'s concurrent workers ``pytest -n N`` regime,
    or 0 if ``-n 1`` or ``pytest-xdist`` isn't being used.
    """
    worker = os.environ.get("PYTEST_XDIST_WORKER", "gw0")
    worker = re.sub(r"^gw", "", worker, 0, re.M)
    return int(worker)


def get_torch_dist_unique_port():
    """
    Returns a port number that can be fed to ``torch.distributed.launch``'s ``--master_port`` argument.

    Under ``pytest-xdist`` it adds a delta number based on a worker id so that concurrent tests don't try to use the
    same port at once.
    """
    port = 29500
    uniq_delta = pytest_xdist_worker_id()
    return port + uniq_delta


1419
1420
1421
1422
1423
def nested_simplify(obj, decimals=3):
    """
    Simplifies an object by rounding float numbers, and downcasting tensors/numpy arrays to get simple equality test
    within tests.
    """
1424
1425
    import numpy as np

1426
1427
1428
1429
    from transformers.tokenization_utils import BatchEncoding

    if isinstance(obj, list):
        return [nested_simplify(item, decimals) for item in obj]
1430
1431
    elif isinstance(obj, np.ndarray):
        return nested_simplify(obj.tolist())
1432
1433
    elif isinstance(obj, (dict, BatchEncoding)):
        return {nested_simplify(k, decimals): nested_simplify(v, decimals) for k, v in obj.items()}
1434
    elif isinstance(obj, (str, int, np.int64)):
1435
        return obj
1436
1437
    elif obj is None:
        return obj
1438
    elif is_torch_available() and isinstance(obj, torch.Tensor):
1439
        return nested_simplify(obj.tolist(), decimals)
1440
1441
1442
1443
    elif is_tf_available() and tf.is_tensor(obj):
        return nested_simplify(obj.numpy().tolist())
    elif isinstance(obj, float):
        return round(obj, decimals)
1444
    elif isinstance(obj, (np.int32, np.float32)):
1445
        return nested_simplify(obj.item(), decimals)
1446
1447
    else:
        raise Exception(f"Not supported: {type(obj)}")