test_pytorch_examples.py 23.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import json
18
import logging
19
import os
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import sys
Aymeric Augustin's avatar
Aymeric Augustin committed
21
from unittest.mock import patch
Aymeric Augustin's avatar
Aymeric Augustin committed
22

23
from transformers import ViTMAEForPreTraining, Wav2Vec2ForPreTraining
24
25
26
27
28
29
30
31
from transformers.testing_utils import (
    CaptureLogger,
    TestCasePlus,
    backend_device_count,
    is_torch_fp16_available_on_device,
    slow,
    torch_device,
)
32

33
34
35

SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
36
37
38
39
40
    for dirname in [
        "text-generation",
        "text-classification",
        "token-classification",
        "language-modeling",
41
        "multiple-choice",
42
        "question-answering",
Sylvain Gugger's avatar
Sylvain Gugger committed
43
44
        "summarization",
        "translation",
45
        "image-classification",
46
        "speech-recognition",
47
        "audio-classification",
48
        "speech-pretraining",
49
        "image-pretraining",
50
        "semantic-segmentation",
51
        "object-detection",
52
        "instance-segmentation",
53
    ]
54
55
56
57
58
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
59
    import run_audio_classification
Sylvain Gugger's avatar
Sylvain Gugger committed
60
    import run_clm
61
62
    import run_generation
    import run_glue
63
    import run_image_classification
64
    import run_instance_segmentation
65
    import run_mae
66
    import run_mlm
67
    import run_ner
68
    import run_object_detection
Sylvain Gugger's avatar
Sylvain Gugger committed
69
    import run_qa as run_squad
70
    import run_semantic_segmentation
71
    import run_seq2seq_qa as run_squad_seq2seq
72
    import run_speech_recognition_ctc
73
    import run_speech_recognition_ctc_adapter
74
    import run_speech_recognition_seq2seq
75
    import run_summarization
76
    import run_swag
77
    import run_translation
78
    import run_wav2vec2_pretraining_no_trainer
Aymeric Augustin's avatar
Aymeric Augustin committed
79

80

81
82
83
logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
84

85

86
87
88
89
90
91
92
93
94
95
96
def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


97
98
99
100
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


101
class ExamplesTests(TestCasePlus):
102
    def test_run_glue(self):
103
104
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
105
            run_glue.py
106
            --model_name_or_path distilbert/distilbert-base-uncased
107
108
            --output_dir {tmp_dir}
            --overwrite_output_dir
Sylvain Gugger's avatar
Sylvain Gugger committed
109
110
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
111
112
            --do_train
            --do_eval
113
114
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
115
116
117
118
119
            --learning_rate=1e-4
            --max_steps=10
            --warmup_steps=2
            --seed=42
            --max_seq_length=128
120
            """.split()
121

122
        if is_torch_fp16_available_on_device(torch_device):
123
            testargs.append("--fp16")
124

125
        with patch.object(sys, "argv", testargs):
126
127
            run_glue.main()
            result = get_results(tmp_dir)
128
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
129

Sylvain Gugger's avatar
Sylvain Gugger committed
130
131
132
133
    def test_run_clm(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
134
            --model_name_or_path distilbert/distilgpt2
Sylvain Gugger's avatar
Sylvain Gugger committed
135
136
137
138
139
140
141
142
143
144
145
146
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

147
        if backend_device_count(torch_device) > 1:
Sylvain Gugger's avatar
Sylvain Gugger committed
148
149
150
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

151
152
        if torch_device == "cpu":
            testargs.append("--use_cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154

        with patch.object(sys, "argv", testargs):
155
156
            run_clm.main()
            result = get_results(tmp_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
            self.assertLess(result["perplexity"], 100)

159
160
161
162
163
164
165
166
    def test_run_clm_config_overrides(self):
        # test that config_overrides works, despite the misleading dumps of default un-updated
        # config via tokenizer

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_type gpt2
167
            --tokenizer_name openai-community/gpt2
168
169
170
171
172
            --train_file ./tests/fixtures/sample_text.txt
            --output_dir {tmp_dir}
            --config_overrides n_embd=10,n_head=2
            """.split()

173
174
        if torch_device == "cpu":
            testargs.append("--use_cpu")
175
176
177
178
179
180
181
182
183

        logger = run_clm.logger
        with patch.object(sys, "argv", testargs):
            with CaptureLogger(logger) as cl:
                run_clm.main()

        self.assertIn('"n_embd": 10', cl.out)
        self.assertIn('"n_head": 2', cl.out)

184
    def test_run_mlm(self):
185
186
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
187
            run_mlm.py
188
            --model_name_or_path distilbert/distilroberta-base
189
190
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
191
            --output_dir {tmp_dir}
Julien Chaumond's avatar
Julien Chaumond committed
192
193
194
            --overwrite_output_dir
            --do_train
            --do_eval
195
            --prediction_loss_only
Julien Chaumond's avatar
Julien Chaumond committed
196
            --num_train_epochs=1
197
        """.split()
198

199
200
        if torch_device == "cpu":
            testargs.append("--use_cpu")
201

Julien Chaumond's avatar
Julien Chaumond committed
202
        with patch.object(sys, "argv", testargs):
203
204
            run_mlm.main()
            result = get_results(tmp_dir)
205
            self.assertLess(result["perplexity"], 42)
Julien Chaumond's avatar
Julien Chaumond committed
206

207
    def test_run_ner(self):
208
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
209
        epochs = 7 if backend_device_count(torch_device) > 1 else 2
210

211
212
213
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_ner.py
214
            --model_name_or_path google-bert/bert-base-uncased
215
216
217
218
219
220
221
222
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --warmup_steps=2
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
223
224
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
225
            --num_train_epochs={epochs}
226
            --seed 7
227
228
        """.split()

229
230
        if torch_device == "cpu":
            testargs.append("--use_cpu")
231
232

        with patch.object(sys, "argv", testargs):
233
234
            run_ner.main()
            result = get_results(tmp_dir)
235
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
236
237
            self.assertLess(result["eval_loss"], 0.5)

238
    def test_run_squad(self):
239
240
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
Russell Klopfer's avatar
Russell Klopfer committed
241
            run_qa.py
242
            --model_name_or_path google-bert/bert-base-uncased
Sylvain Gugger's avatar
Sylvain Gugger committed
243
244
245
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
246
247
            --output_dir {tmp_dir}
            --overwrite_output_dir
248
249
250
251
252
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
253
254
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
255
256
        """.split()

257
        with patch.object(sys, "argv", testargs):
258
259
            run_squad.main()
            result = get_results(tmp_dir)
Russell Klopfer's avatar
Russell Klopfer committed
260
261
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
262

263
264
265
266
    def test_run_squad_seq2seq(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_seq2seq_qa.py
267
            --model_name_or_path google-t5/t5-small
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
            --context_column context
            --question_column question
            --answer_column answers
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
            run_squad_seq2seq.main()
            result = get_results(tmp_dir)
289
290
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
291

292
293
294
295
    def test_run_swag(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_swag.py
296
            --model_name_or_path google-bert/bert-base-uncased
297
298
299
300
301
302
303
304
305
306
307
308
309
310
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=20
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
311
312
            run_swag.main()
            result = get_results(tmp_dir)
313
314
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)

315
    def test_generation(self):
316
        testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
317

318
        if is_torch_fp16_available_on_device(torch_device):
319
320
321
322
323
324
            testargs.append("--fp16")

        model_type, model_name = (
            "--model_type=gpt2",
            "--model_name_or_path=sshleifer/tiny-gpt2",
        )
325
        with patch.object(sys, "argv", testargs + [model_type, model_name]):
326
            result = run_generation.main()
327
            self.assertGreaterEqual(len(result[0]), 10)
328
329

    @slow
330
    def test_run_summarization(self):
331
332
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
333
            run_summarization.py
334
            --model_name_or_path google-t5/t5-small
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
350
            run_summarization.main()
351
            result = get_results(tmp_dir)
352
353
354
355
356
357
            self.assertGreaterEqual(result["eval_rouge1"], 10)
            self.assertGreaterEqual(result["eval_rouge2"], 2)
            self.assertGreaterEqual(result["eval_rougeL"], 7)
            self.assertGreaterEqual(result["eval_rougeLsum"], 7)

    @slow
358
    def test_run_translation(self):
359
360
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
361
            run_translation.py
362
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
363
364
            --source_lang en
            --target_lang ro
365
366
367
368
369
370
371
372
373
374
375
376
377
378
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
            --source_lang en_XX
            --target_lang ro_RO
379
            --max_source_length 512
380
381
382
        """.split()

        with patch.object(sys, "argv", testargs):
383
            run_translation.main()
384
            result = get_results(tmp_dir)
385
            self.assertGreaterEqual(result["eval_bleu"], 30)
386
387
388
389
390
391
392

    def test_run_image_classification(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_image_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path google/vit-base-patch16-224-in21k
393
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
394
            --trust_remote_code
395
396
            --do_train
            --do_eval
397
            --learning_rate 1e-4
398
399
400
401
402
403
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
404
            --max_steps 10
405
            --train_val_split 0.1
406
            --seed 42
407
            --label_column_name labels
408
409
        """.split()

410
        if is_torch_fp16_available_on_device(torch_device):
411
412
413
414
415
416
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_image_classification.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)
417
418
419
420
421
422
423

    def test_run_speech_recognition_ctc(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_ctc.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
424
            --dataset_name hf-internal-testing/librispeech_asr_dummy
425
426
427
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
428
            --trust_remote_code
429
430
431
432
433
434
435
436
437
438
439
440
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

441
        if is_torch_fp16_available_on_device(torch_device):
442
443
444
445
446
447
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_ctc.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
448
449
450
451
452
453
454
455
456
457
458

    def test_run_speech_recognition_ctc_adapter(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_ctc_adapter.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name hf-internal-testing/librispeech_asr_dummy
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
459
            --trust_remote_code
460
461
462
463
464
465
466
467
468
469
470
471
472
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --target_language tur
            --seed 42
        """.split()

473
        if is_torch_fp16_available_on_device(torch_device):
474
475
476
477
478
479
480
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_ctc_adapter.main()
            result = get_results(tmp_dir)
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "./adapter.tur.safetensors")))
            self.assertLess(result["eval_loss"], result["train_loss"])
481

482
483
484
485
486
487
488
489
490
491
    def test_run_speech_recognition_seq2seq(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_seq2seq.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-speech-encoder-decoder
            --dataset_name hf-internal-testing/librispeech_asr_dummy
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
492
            --trust_remote_code
493
494
495
496
497
498
499
500
501
502
503
504
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 4
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

505
        if is_torch_fp16_available_on_device(torch_device):
506
507
508
509
510
511
512
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_seq2seq.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])

513
514
515
516
517
518
519
    def test_run_audio_classification(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_audio_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name anton-l/superb_demo
520
            --trust_remote_code
521
522
523
            --dataset_config_name ks
            --train_split_name test
            --eval_split_name test
524
            --audio_column_name audio
525
526
527
528
529
530
531
532
533
534
535
536
537
            --label_column_name label
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --num_train_epochs 10
            --max_steps 50
            --seed 42
        """.split()

538
        if is_torch_fp16_available_on_device(torch_device):
539
540
541
542
543
544
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_audio_classification.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
545
546
547
548
549
550
551

    def test_run_wav2vec2_pretraining(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_wav2vec2_pretraining_no_trainer.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
552
            --dataset_name hf-internal-testing/librispeech_asr_dummy
553
554
            --dataset_config_names clean
            --dataset_split_names validation
555
            --trust_remote_code
556
            --learning_rate 1e-4
557
558
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
559
            --preprocessing_num_workers 16
560
            --max_train_steps 2
561
562
563
564
565
566
567
568
            --validation_split_percentage 5
            --seed 42
        """.split()

        with patch.object(sys, "argv", testargs):
            run_wav2vec2_pretraining_no_trainer.main()
            model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)
569
570
571
572
573
574
575

    def test_run_vit_mae_pretraining(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_mae.py
            --output_dir {tmp_dir}
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
576
            --trust_remote_code
577
578
579
580
581
582
583
584
585
586
587
588
589
590
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
            --max_steps 10
            --train_val_split 0.1
            --seed 42
        """.split()

591
        if is_torch_fp16_available_on_device(torch_device):
592
593
594
595
596
597
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_mae.main()
            model = ViTMAEForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

    def test_run_semantic_segmentation(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_semantic_segmentation.py
            --output_dir {tmp_dir}
            --dataset_name huggingface/semantic-segmentation-test-sample
            --do_train
            --do_eval
            --remove_unused_columns False
            --overwrite_output_dir True
            --max_steps 10
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --seed 32
        """.split()

616
        if is_torch_fp16_available_on_device(torch_device):
617
618
619
620
621
622
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_semantic_segmentation.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_overall_accuracy"], 0.1)
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

    @patch.dict(os.environ, {"WANDB_DISABLED": "true"})
    def test_run_object_detection(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_object_detection.py
            --model_name_or_path qubvel-hf/detr-resnet-50-finetuned-10k-cppe5
            --output_dir {tmp_dir}
            --dataset_name qubvel-hf/cppe-5-sample
            --do_train
            --do_eval
            --remove_unused_columns False
            --overwrite_output_dir True
            --eval_do_concat_batches False
            --max_steps 10
            --learning_rate=1e-6
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --seed 32
        """.split()

        if is_torch_fp16_available_on_device(torch_device):
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_object_detection.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["test_map"], 0.1)
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

    @patch.dict(os.environ, {"WANDB_DISABLED": "true"})
    def test_run_instance_segmentation(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_instance_segmentation.py
            --model_name_or_path qubvel-hf/finetune-instance-segmentation-ade20k-mini-mask2former
            --output_dir {tmp_dir}
            --dataset_name qubvel-hf/ade20k-nano
            --do_reduce_labels
            --image_height 256
            --image_width 256
            --do_train
            --num_train_epochs 1
            --learning_rate 1e-5
            --lr_scheduler_type constant
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --do_eval
            --evaluation_strategy epoch
            --seed 32
        """.split()

        if is_torch_fp16_available_on_device(torch_device):
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_instance_segmentation.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["test_map"], 0.1)