test_pytorch_examples.py 20.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import json
18
import logging
19
import os
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import sys
Aymeric Augustin's avatar
Aymeric Augustin committed
21
from unittest.mock import patch
Aymeric Augustin's avatar
Aymeric Augustin committed
22

23
from transformers import ViTMAEForPreTraining, Wav2Vec2ForPreTraining
24
25
26
27
28
29
30
31
from transformers.testing_utils import (
    CaptureLogger,
    TestCasePlus,
    backend_device_count,
    is_torch_fp16_available_on_device,
    slow,
    torch_device,
)
32

33
34
35

SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
36
37
38
39
40
    for dirname in [
        "text-generation",
        "text-classification",
        "token-classification",
        "language-modeling",
41
        "multiple-choice",
42
        "question-answering",
Sylvain Gugger's avatar
Sylvain Gugger committed
43
44
        "summarization",
        "translation",
45
        "image-classification",
46
        "speech-recognition",
47
        "audio-classification",
48
        "speech-pretraining",
49
        "image-pretraining",
50
        "semantic-segmentation",
51
    ]
52
53
54
55
56
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
57
    import run_audio_classification
Sylvain Gugger's avatar
Sylvain Gugger committed
58
    import run_clm
59
60
    import run_generation
    import run_glue
61
    import run_image_classification
62
    import run_mae
63
    import run_mlm
64
    import run_ner
Sylvain Gugger's avatar
Sylvain Gugger committed
65
    import run_qa as run_squad
66
    import run_semantic_segmentation
67
    import run_seq2seq_qa as run_squad_seq2seq
68
    import run_speech_recognition_ctc
69
    import run_speech_recognition_ctc_adapter
70
    import run_speech_recognition_seq2seq
71
    import run_summarization
72
    import run_swag
73
    import run_translation
74
    import run_wav2vec2_pretraining_no_trainer
Aymeric Augustin's avatar
Aymeric Augustin committed
75

76

77
78
79
logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
80

81

82
83
84
85
86
87
88
89
90
91
92
def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


93
94
95
96
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


97
class ExamplesTests(TestCasePlus):
98
    def test_run_glue(self):
99
100
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
101
            run_glue.py
102
            --model_name_or_path distilbert/distilbert-base-uncased
103
104
            --output_dir {tmp_dir}
            --overwrite_output_dir
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
107
108
            --do_train
            --do_eval
109
110
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
111
112
113
114
115
            --learning_rate=1e-4
            --max_steps=10
            --warmup_steps=2
            --seed=42
            --max_seq_length=128
116
            """.split()
117

118
        if is_torch_fp16_available_on_device(torch_device):
119
            testargs.append("--fp16")
120

121
        with patch.object(sys, "argv", testargs):
122
123
            run_glue.main()
            result = get_results(tmp_dir)
124
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
125

Sylvain Gugger's avatar
Sylvain Gugger committed
126
127
128
129
    def test_run_clm(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
130
            --model_name_or_path distilbert/distilgpt2
Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
133
134
135
136
137
138
139
140
141
142
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

143
        if backend_device_count(torch_device) > 1:
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
146
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

147
148
        if torch_device == "cpu":
            testargs.append("--use_cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150

        with patch.object(sys, "argv", testargs):
151
152
            run_clm.main()
            result = get_results(tmp_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154
            self.assertLess(result["perplexity"], 100)

155
156
157
158
159
160
161
162
    def test_run_clm_config_overrides(self):
        # test that config_overrides works, despite the misleading dumps of default un-updated
        # config via tokenizer

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_type gpt2
163
            --tokenizer_name openai-community/gpt2
164
165
166
167
168
            --train_file ./tests/fixtures/sample_text.txt
            --output_dir {tmp_dir}
            --config_overrides n_embd=10,n_head=2
            """.split()

169
170
        if torch_device == "cpu":
            testargs.append("--use_cpu")
171
172
173
174
175
176
177
178
179

        logger = run_clm.logger
        with patch.object(sys, "argv", testargs):
            with CaptureLogger(logger) as cl:
                run_clm.main()

        self.assertIn('"n_embd": 10', cl.out)
        self.assertIn('"n_head": 2', cl.out)

180
    def test_run_mlm(self):
181
182
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
183
            run_mlm.py
184
            --model_name_or_path distilbert/distilroberta-base
185
186
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
187
            --output_dir {tmp_dir}
Julien Chaumond's avatar
Julien Chaumond committed
188
189
190
            --overwrite_output_dir
            --do_train
            --do_eval
191
            --prediction_loss_only
Julien Chaumond's avatar
Julien Chaumond committed
192
            --num_train_epochs=1
193
        """.split()
194

195
196
        if torch_device == "cpu":
            testargs.append("--use_cpu")
197

Julien Chaumond's avatar
Julien Chaumond committed
198
        with patch.object(sys, "argv", testargs):
199
200
            run_mlm.main()
            result = get_results(tmp_dir)
201
            self.assertLess(result["perplexity"], 42)
Julien Chaumond's avatar
Julien Chaumond committed
202

203
    def test_run_ner(self):
204
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
205
        epochs = 7 if backend_device_count(torch_device) > 1 else 2
206

207
208
209
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_ner.py
210
            --model_name_or_path google-bert/bert-base-uncased
211
212
213
214
215
216
217
218
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --warmup_steps=2
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
221
            --num_train_epochs={epochs}
222
            --seed 7
223
224
        """.split()

225
226
        if torch_device == "cpu":
            testargs.append("--use_cpu")
227
228

        with patch.object(sys, "argv", testargs):
229
230
            run_ner.main()
            result = get_results(tmp_dir)
231
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
232
233
            self.assertLess(result["eval_loss"], 0.5)

234
    def test_run_squad(self):
235
236
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
Russell Klopfer's avatar
Russell Klopfer committed
237
            run_qa.py
238
            --model_name_or_path google-bert/bert-base-uncased
Sylvain Gugger's avatar
Sylvain Gugger committed
239
240
241
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
242
243
            --output_dir {tmp_dir}
            --overwrite_output_dir
244
245
246
247
248
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
249
250
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
251
252
        """.split()

253
        with patch.object(sys, "argv", testargs):
254
255
            run_squad.main()
            result = get_results(tmp_dir)
Russell Klopfer's avatar
Russell Klopfer committed
256
257
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
258

259
260
261
262
    def test_run_squad_seq2seq(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_seq2seq_qa.py
263
            --model_name_or_path google-t5/t5-small
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
            --context_column context
            --question_column question
            --answer_column answers
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
            run_squad_seq2seq.main()
            result = get_results(tmp_dir)
285
286
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
287

288
289
290
291
    def test_run_swag(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_swag.py
292
            --model_name_or_path google-bert/bert-base-uncased
293
294
295
296
297
298
299
300
301
302
303
304
305
306
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=20
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
307
308
            run_swag.main()
            result = get_results(tmp_dir)
309
310
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)

311
    def test_generation(self):
312
        testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
313

314
        if is_torch_fp16_available_on_device(torch_device):
315
316
317
318
319
320
            testargs.append("--fp16")

        model_type, model_name = (
            "--model_type=gpt2",
            "--model_name_or_path=sshleifer/tiny-gpt2",
        )
321
        with patch.object(sys, "argv", testargs + [model_type, model_name]):
322
            result = run_generation.main()
323
            self.assertGreaterEqual(len(result[0]), 10)
324
325

    @slow
326
    def test_run_summarization(self):
327
328
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
329
            run_summarization.py
330
            --model_name_or_path google-t5/t5-small
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
346
            run_summarization.main()
347
            result = get_results(tmp_dir)
348
349
350
351
352
353
            self.assertGreaterEqual(result["eval_rouge1"], 10)
            self.assertGreaterEqual(result["eval_rouge2"], 2)
            self.assertGreaterEqual(result["eval_rougeL"], 7)
            self.assertGreaterEqual(result["eval_rougeLsum"], 7)

    @slow
354
    def test_run_translation(self):
355
356
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
357
            run_translation.py
358
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
359
360
            --source_lang en
            --target_lang ro
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
            --source_lang en_XX
            --target_lang ro_RO
        """.split()

        with patch.object(sys, "argv", testargs):
378
            run_translation.main()
379
            result = get_results(tmp_dir)
380
            self.assertGreaterEqual(result["eval_bleu"], 30)
381
382
383
384
385
386
387

    def test_run_image_classification(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_image_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path google/vit-base-patch16-224-in21k
388
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
389
390
            --do_train
            --do_eval
391
            --learning_rate 1e-4
392
393
394
395
396
397
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
398
            --max_steps 10
399
            --train_val_split 0.1
400
            --seed 42
401
            --label_column_name labels
402
403
        """.split()

404
        if is_torch_fp16_available_on_device(torch_device):
405
406
407
408
409
410
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_image_classification.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)
411
412
413
414
415
416
417

    def test_run_speech_recognition_ctc(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_ctc.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
418
            --dataset_name hf-internal-testing/librispeech_asr_dummy
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

434
        if is_torch_fp16_available_on_device(torch_device):
435
436
437
438
439
440
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_ctc.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

    def test_run_speech_recognition_ctc_adapter(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_ctc_adapter.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name hf-internal-testing/librispeech_asr_dummy
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --target_language tur
            --seed 42
        """.split()

465
        if is_torch_fp16_available_on_device(torch_device):
466
467
468
469
470
471
472
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_ctc_adapter.main()
            result = get_results(tmp_dir)
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "./adapter.tur.safetensors")))
            self.assertLess(result["eval_loss"], result["train_loss"])
473

474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    def test_run_speech_recognition_seq2seq(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_seq2seq.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-speech-encoder-decoder
            --dataset_name hf-internal-testing/librispeech_asr_dummy
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 4
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

496
        if is_torch_fp16_available_on_device(torch_device):
497
498
499
500
501
502
503
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_seq2seq.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])

504
505
506
507
508
509
510
511
512
513
    def test_run_audio_classification(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_audio_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name anton-l/superb_demo
            --dataset_config_name ks
            --train_split_name test
            --eval_split_name test
514
            --audio_column_name audio
515
516
517
518
519
520
521
522
523
524
525
526
527
            --label_column_name label
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --num_train_epochs 10
            --max_steps 50
            --seed 42
        """.split()

528
        if is_torch_fp16_available_on_device(torch_device):
529
530
531
532
533
534
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_audio_classification.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
535
536
537
538
539
540
541

    def test_run_wav2vec2_pretraining(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_wav2vec2_pretraining_no_trainer.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
542
            --dataset_name hf-internal-testing/librispeech_asr_dummy
543
544
545
            --dataset_config_names clean
            --dataset_split_names validation
            --learning_rate 1e-4
546
547
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
548
            --preprocessing_num_workers 16
549
            --max_train_steps 2
550
551
552
553
554
555
556
557
            --validation_split_percentage 5
            --seed 42
        """.split()

        with patch.object(sys, "argv", testargs):
            run_wav2vec2_pretraining_no_trainer.main()
            model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

    def test_run_vit_mae_pretraining(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_mae.py
            --output_dir {tmp_dir}
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
            --max_steps 10
            --train_val_split 0.1
            --seed 42
        """.split()

579
        if is_torch_fp16_available_on_device(torch_device):
580
581
582
583
584
585
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_mae.main()
            model = ViTMAEForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

    def test_run_semantic_segmentation(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_semantic_segmentation.py
            --output_dir {tmp_dir}
            --dataset_name huggingface/semantic-segmentation-test-sample
            --do_train
            --do_eval
            --remove_unused_columns False
            --overwrite_output_dir True
            --max_steps 10
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --seed 32
        """.split()

604
        if is_torch_fp16_available_on_device(torch_device):
605
606
607
608
609
610
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_semantic_segmentation.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_overall_accuracy"], 0.1)