run_clm_flax.py 36.9 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Pre-training/Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=text-generation
Suraj Patil's avatar
Suraj Patil committed
21
22
23
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.

Suraj Patil's avatar
Suraj Patil committed
24
import json
Suraj Patil's avatar
Suraj Patil committed
25
26
27
28
29
import logging
import math
import os
import sys
import time
30
31
from dataclasses import asdict, dataclass, field
from enum import Enum
32
from itertools import chain
Suraj Patil's avatar
Suraj Patil committed
33
34
35
36
37
38
from pathlib import Path
from typing import Callable, Optional

import datasets
import jax
import jax.numpy as jnp
39
import numpy as np
Suraj Patil's avatar
Suraj Patil committed
40
import optax
41
from datasets import Dataset, load_dataset
Suraj Patil's avatar
Suraj Patil committed
42
from flax import jax_utils, traverse_util
43
from flax.jax_utils import pad_shard_unpad, unreplicate
Suraj Patil's avatar
Suraj Patil committed
44
45
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
46
from huggingface_hub import HfApi
47
48
49
from tqdm import tqdm

import transformers
Suraj Patil's avatar
Suraj Patil committed
50
51
52
53
54
55
56
57
from transformers import (
    CONFIG_MAPPING,
    FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoTokenizer,
    FlaxAutoModelForCausalLM,
    HfArgumentParser,
    is_tensorboard_available,
58
    set_seed,
Suraj Patil's avatar
Suraj Patil committed
59
60
)
from transformers.testing_utils import CaptureLogger
61
from transformers.utils import send_example_telemetry
Suraj Patil's avatar
Suraj Patil committed
62
63
64
65
66
67
68
69


logger = logging.getLogger(__name__)

MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
@dataclass
class TrainingArguments:
    output_dir: str = field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
    )
    overwrite_output_dir: bool = field(
        default=False,
        metadata={
            "help": (
                "Overwrite the content of the output directory. "
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
    )
    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
    adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
    seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
    push_to_hub: bool = field(
        default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
    )
    hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
    )
    hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})

    def __post_init__(self):
        if self.output_dir is not None:
            self.output_dir = os.path.expanduser(self.output_dir)

    def to_dict(self):
        """
        Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
        the token values by removing their value.
        """
        d = asdict(self)
        for k, v in d.items():
            if isinstance(v, Enum):
                d[k] = v.value
            if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
                d[k] = [x.value for x in v]
            if k.endswith("_token"):
                d[k] = f"<{k.upper()}>"
        return d


Suraj Patil's avatar
Suraj Patil committed
132
133
134
135
136
137
138
139
140
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
141
            "help": (
142
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
143
            )
Suraj Patil's avatar
Suraj Patil committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
166
167
168
169
            "help": (
                "Floating-point format in which the model weights should be initialized and trained. Choose one of"
                " `[float32, float16, bfloat16]`."
            )
Suraj Patil's avatar
Suraj Patil committed
170
171
        },
    )
172
173
    token: str = field(
        default=None,
174
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
175
            "help": (
176
177
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
178
            )
179
180
        },
    )
181
182
183
184
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
185
186
187
                "Whether to trust the execution of code from datasets/models defined on the Hub."
                " This option should only be set to `True` for repositories you trust and in which you have read the"
                " code, as it will execute code present on the Hub on your local machine."
188
189
190
            )
        },
    )
Suraj Patil's avatar
Suraj Patil committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
215
216
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
Suraj Patil's avatar
Suraj Patil committed
217
218
219
220
221
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
224
225
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
Suraj Patil's avatar
Suraj Patil committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
    block_size: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
240
241
242
243
244
            "help": (
                "Optional input sequence length after tokenization. "
                "The training dataset will be truncated in block of this size for training. "
                "Default to the model max input length for single sentence inputs (take into account special tokens)."
            )
Suraj Patil's avatar
Suraj Patil committed
245
246
247
248
249
250
251
252
253
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
254
    keep_linebreaks: bool = field(
255
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
256
    )
Suraj Patil's avatar
Suraj Patil committed
257
258
259
260
261
262
263

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
264
265
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("train_file` should be a csv, json or text file.")
Suraj Patil's avatar
Suraj Patil committed
266
267
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
268
269
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`validation_file` should be a csv, json or text file.")
Suraj Patil's avatar
Suraj Patil committed
270
271
272
273
274
275
276
277
278


class TrainState(train_state.TrainState):
    dropout_rng: jnp.ndarray

    def replicate(self):
        return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))


279
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False, drop_last=True):
Suraj Patil's avatar
Suraj Patil committed
280
    """
281
282
    Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
    and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.
Suraj Patil's avatar
Suraj Patil committed
283
284
    """
    if shuffle:
285
        batch_idx = jax.random.permutation(rng, len(dataset))
286
        batch_idx = np.asarray(batch_idx)
Suraj Patil's avatar
Suraj Patil committed
287
    else:
288
        batch_idx = np.arange(len(dataset))
Suraj Patil's avatar
Suraj Patil committed
289

290
291
292
293
294
295
296
    if drop_last:
        steps_per_epoch = len(dataset) // batch_size
        batch_idx = batch_idx[: steps_per_epoch * batch_size]  # Skip incomplete batch.
        batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
    else:
        steps_per_epoch = math.ceil(len(dataset) / batch_size)
        batch_idx = np.array_split(batch_idx, steps_per_epoch)
Suraj Patil's avatar
Suraj Patil committed
297
298
299

    for idx in batch_idx:
        batch = dataset[idx]
300
        batch = {k: np.array(v) for k, v in batch.items()}
Suraj Patil's avatar
Suraj Patil committed
301
302
303
304

        yield batch


305
def write_train_metric(summary_writer, train_metrics, train_time, step):
Suraj Patil's avatar
Suraj Patil committed
306
307
308
309
310
311
312
313
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)

314
315

def write_eval_metric(summary_writer, eval_metrics, step):
Suraj Patil's avatar
Suraj Patil committed
316
317
318
319
320
321
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


def create_learning_rate_fn(
    train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
322
) -> Callable[[int], jnp.ndarray]:
Suraj Patil's avatar
Suraj Patil committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    """Returns a linear warmup, linear_decay learning rate function."""
    steps_per_epoch = train_ds_size // train_batch_size
    num_train_steps = steps_per_epoch * num_train_epochs
    warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
    )
    schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
    return schedule_fn


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

347
348
349
350
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_clm", model_args, data_args, framework="flax")

Suraj Patil's avatar
Suraj Patil committed
351
352
353
354
355
356
357
    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
358
            f"Output directory ({training_args.output_dir}) already exists and is not empty. "
Suraj Patil's avatar
Suraj Patil committed
359
360
361
362
363
            "Use --overwrite_output_dir to overcome."
        )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
364
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Suraj Patil's avatar
Suraj Patil committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

380
381
382
    # Set seed before initializing model.
    set_seed(training_args.seed)

383
384
    # Handle the repository creation
    if training_args.push_to_hub:
385
386
387
388
389
        # Retrieve of infer repo_name
        repo_name = training_args.hub_model_id
        if repo_name is None:
            repo_name = Path(training_args.output_dir).absolute().name
        # Create repo and retrieve repo_id
390
391
        api = HfApi()
        repo_id = api.create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
392

Suraj Patil's avatar
Suraj Patil committed
393
394
395
396
397
398
399
400
401
402
403
404
    #  Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
405
406
407
408
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            keep_in_memory=False,
409
            token=model_args.token,
410
            num_proc=data_args.preprocessing_num_workers,
411
            trust_remote_code=model_args.trust_remote_code,
Suraj Patil's avatar
Suraj Patil committed
412
413
414
415
416
417
418
419
        )

        if "validation" not in dataset.keys():
            dataset["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
420
                token=model_args.token,
421
                num_proc=data_args.preprocessing_num_workers,
422
                trust_remote_code=model_args.trust_remote_code,
Suraj Patil's avatar
Suraj Patil committed
423
424
425
426
427
428
            )
            dataset["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
429
                token=model_args.token,
430
                num_proc=data_args.preprocessing_num_workers,
431
                trust_remote_code=model_args.trust_remote_code,
Suraj Patil's avatar
Suraj Patil committed
432
433
434
            )
    else:
        data_files = {}
435
        dataset_args = {}
Suraj Patil's avatar
Suraj Patil committed
436
437
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
438
            extension = data_args.train_file.split(".")[-1]
Suraj Patil's avatar
Suraj Patil committed
439
440
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
441
            extension = data_args.validation_file.split(".")[-1]
Suraj Patil's avatar
Suraj Patil committed
442
443
        if extension == "txt":
            extension = "text"
444
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
445
446
447
448
449
        dataset = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            **dataset_args,
450
            token=model_args.token,
451
            num_proc=data_args.preprocessing_num_workers,
452
        )
453

454
455
        if "validation" not in dataset.keys():
            dataset["validation"] = load_dataset(
456
457
458
459
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
460
                **dataset_args,
461
                token=model_args.token,
462
                num_proc=data_args.preprocessing_num_workers,
463
            )
464
            dataset["train"] = load_dataset(
465
466
467
468
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
469
                **dataset_args,
470
                token=model_args.token,
471
                num_proc=data_args.preprocessing_num_workers,
472
            )
Suraj Patil's avatar
Suraj Patil committed
473
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
474
    # https://huggingface.co/docs/datasets/loading_datasets.
Suraj Patil's avatar
Suraj Patil committed
475
476
477
478
479
480
481

    # Load pretrained model and tokenizer

    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
482
483
484
        config = AutoConfig.from_pretrained(
            model_args.config_name,
            cache_dir=model_args.cache_dir,
485
            token=model_args.token,
486
            trust_remote_code=model_args.trust_remote_code,
487
        )
Suraj Patil's avatar
Suraj Patil committed
488
    elif model_args.model_name_or_path:
489
490
491
        config = AutoConfig.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
492
            token=model_args.token,
493
            trust_remote_code=model_args.trust_remote_code,
494
        )
Suraj Patil's avatar
Suraj Patil committed
495
496
497
498
499
500
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
501
502
503
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
504
            token=model_args.token,
505
            trust_remote_code=model_args.trust_remote_code,
Suraj Patil's avatar
Suraj Patil committed
506
507
508
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
509
510
511
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
512
            token=model_args.token,
513
            trust_remote_code=model_args.trust_remote_code,
Suraj Patil's avatar
Suraj Patil committed
514
515
516
        )
    else:
        raise ValueError(
517
            "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
Suraj Patil's avatar
Suraj Patil committed
518
519
520
521
522
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = FlaxAutoModelForCausalLM.from_pretrained(
523
524
525
526
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
527
            token=model_args.token,
528
            trust_remote_code=model_args.trust_remote_code,
Suraj Patil's avatar
Suraj Patil committed
529
530
531
        )
    else:
        model = FlaxAutoModelForCausalLM.from_config(
532
533
534
            config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
535
            trust_remote_code=model_args.trust_remote_code,
Suraj Patil's avatar
Suraj Patil committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        )

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = dataset["train"].column_names
    else:
        column_names = dataset["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

    def tokenize_function(examples):
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
555
556
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
Suraj Patil's avatar
Suraj Patil committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
            )
        return output

    tokenized_datasets = dataset.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if data_args.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > config.max_position_embeddings:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
573
                f"Using block_size={min(1024, config.max_position_embeddings)} instead. You can change that default value by passing --block_size xxx."
Suraj Patil's avatar
Suraj Patil committed
574
            )
575
            block_size = min(1024, config.max_position_embeddings)
Suraj Patil's avatar
Suraj Patil committed
576
577
578
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warning(
579
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
Suraj Patil's avatar
Suraj Patil committed
580
581
582
583
584
585
586
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
587
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
Suraj Patil's avatar
Suraj Patil committed
588
589
590
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
591
592
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
Suraj Patil's avatar
Suraj Patil committed
593
594
595
596
597
598
599
600
601
602
603
604
605
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
606
    # https://huggingface.co/docs/datasets/process#map
Suraj Patil's avatar
Suraj Patil committed
607
608
609
610
611
612
613
614
615
616
617
618
619

    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
620
621
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Suraj Patil's avatar
Suraj Patil committed
622
623
624
625
626
627

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
        if data_args.max_eval_samples is not None:
628
629
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
Suraj Patil's avatar
Suraj Patil committed
630
631

    # Enable tensorboard only on the master node
632
    has_tensorboard = is_tensorboard_available()
Suraj Patil's avatar
Suraj Patil committed
633
    if has_tensorboard and jax.process_index() == 0:
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )
Suraj Patil's avatar
Suraj Patil committed
648
649
650
651
652
653
654
655

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
656
657
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()
Suraj Patil's avatar
Suraj Patil committed
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
676
677
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
678
679
680
681
682
683
        layer_norm_named_params = {
            layer[-2:]
            for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        }
684
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
Suraj Patil's avatar
Suraj Patil committed
685
686
687
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    if training_args.adafactor:
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=linear_decay_lr_schedule_fn,
        )
    else:
        optimizer = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            eps=training_args.adam_epsilon,
            weight_decay=training_args.weight_decay,
            mask=decay_mask_fn,
        )
Suraj Patil's avatar
Suraj Patil committed
703
704

    # Setup train state
705
    state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng)
Suraj Patil's avatar
Suraj Patil committed
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759

    def loss_fn(logits, labels):
        shift_logits = logits[..., :-1, :]
        shift_labels = labels[..., 1:]
        loss = optax.softmax_cross_entropy(shift_logits, onehot(shift_labels, shift_logits.shape[-1]))
        return loss.mean()

    # Define gradient update step fn
    def train_step(state, batch):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = loss_fn(logits, labels)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)

        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")
        logits = model(**batch, params=params, train=False)[0]
        loss = loss_fn(logits, labels)

        # summarize metrics
        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return metrics

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
    p_eval_step = jax.pmap(eval_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {train_batch_size}")
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
760
    train_metrics = []
761
    epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0)
Suraj Patil's avatar
Suraj Patil committed
762
763
764
765
766
767
768
769
770
771
772
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # Generate an epoch by shuffling sampling indices from the train dataset
        train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
        steps_per_epoch = len(train_dataset) // train_batch_size
        # train
773
        for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
Suraj Patil's avatar
Suraj Patil committed
774
            batch = next(train_loader)
775
            batch = shard(batch)
Suraj Patil's avatar
Suraj Patil committed
776
777
778
            state, train_metric = p_train_step(state, batch)
            train_metrics.append(train_metric)

779
            cur_step = epoch * (len(train_dataset) // train_batch_size) + step
Suraj Patil's avatar
Suraj Patil committed
780

781
            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
782
783
784
785
786
                # Save metrics
                train_metric = unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)
Suraj Patil's avatar
Suraj Patil committed
787

788
                epochs.write(
Sylvain Gugger's avatar
Sylvain Gugger committed
789
790
                    f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate:"
                    f" {train_metric['learning_rate'].mean()})"
791
792
793
                )

                train_metrics = []
Suraj Patil's avatar
Suraj Patil committed
794

795
796
797
            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                # ======================== Evaluating ==============================
                eval_metrics = []
798
799
                eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False)
                eval_steps = math.ceil(len(eval_dataset) / eval_batch_size)
800
801
802
                for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
                    # Model forward
                    batch = next(eval_loader)
803
804
805
                    metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                        state.params, batch, min_device_batch=per_device_eval_batch_size
                    )
806
807
808
809
                    eval_metrics.append(metrics)

                # normalize eval metrics
                eval_metrics = get_metrics(eval_metrics)
810
                eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
811
812
813
814
815
816
817

                try:
                    eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
                except OverflowError:
                    eval_metrics["perplexity"] = float("inf")

                # Print metrics and update progress bar
Sylvain Gugger's avatar
Sylvain Gugger committed
818
819
820
821
                desc = (
                    f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity:"
                    f" {eval_metrics['perplexity']})"
                )
822
823
                epochs.write(desc)
                epochs.desc = desc
Suraj Patil's avatar
Suraj Patil committed
824

825
826
827
828
829
830
831
832
                # Save metrics
                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if cur_step % training_args.save_steps == 0 and cur_step > 0:
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    params = jax.device_get(unreplicate(state.params))
833
834
835
                    model.save_pretrained(training_args.output_dir, params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
836
837
838
839
840
841
842
                        api.upload_folder(
                            commit_message=f"Saving weights and logs of step {cur_step}",
                            folder_path=training_args.output_dir,
                            repo_id=repo_id,
                            repo_type="model",
                            token=training_args.hub_token,
                        )
Suraj Patil's avatar
Suraj Patil committed
843
844
845
    # Eval after training
    if training_args.do_eval:
        eval_metrics = []
846
847
        eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False)
        eval_steps = math.ceil(len(eval_dataset) / eval_batch_size)
Suraj Patil's avatar
Suraj Patil committed
848
849
        for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
            # Model forward
850
851
852
853
            batch = next(eval_loader)
            metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                state.params, batch, min_device_batch=per_device_eval_batch_size
            )
Suraj Patil's avatar
Suraj Patil committed
854
855
856
857
            eval_metrics.append(metrics)

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)
858
        eval_metrics = jax.tree_util.tree_map(lambda x: jnp.mean(x).item(), eval_metrics)
Suraj Patil's avatar
Suraj Patil committed
859
860
861
862
863
864
865
866
867
868
869
870

        try:
            eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
        except OverflowError:
            eval_metrics["perplexity"] = float("inf")

        if jax.process_index() == 0:
            eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
            path = os.path.join(training_args.output_dir, "eval_results.json")
            with open(path, "w") as f:
                json.dump(eval_metrics, f, indent=4, sort_keys=True)

Suraj Patil's avatar
Suraj Patil committed
871
872
873

if __name__ == "__main__":
    main()