run_clm_flax.py 36 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Pre-training/Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=text-generation
Suraj Patil's avatar
Suraj Patil committed
21
22
23
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.

Suraj Patil's avatar
Suraj Patil committed
24
import json
Suraj Patil's avatar
Suraj Patil committed
25
26
27
28
29
import logging
import math
import os
import sys
import time
30
import warnings
31
32
from dataclasses import asdict, dataclass, field
from enum import Enum
33
from itertools import chain
Suraj Patil's avatar
Suraj Patil committed
34
35
36
37
38
39
from pathlib import Path
from typing import Callable, Optional

import datasets
import jax
import jax.numpy as jnp
40
import numpy as np
Suraj Patil's avatar
Suraj Patil committed
41
import optax
42
from datasets import Dataset, load_dataset
Suraj Patil's avatar
Suraj Patil committed
43
from flax import jax_utils, traverse_util
44
from flax.jax_utils import pad_shard_unpad, unreplicate
Suraj Patil's avatar
Suraj Patil committed
45
46
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
47
from huggingface_hub import Repository, create_repo
48
49
50
from tqdm import tqdm

import transformers
Suraj Patil's avatar
Suraj Patil committed
51
52
53
54
55
56
57
58
from transformers import (
    CONFIG_MAPPING,
    FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoTokenizer,
    FlaxAutoModelForCausalLM,
    HfArgumentParser,
    is_tensorboard_available,
59
    set_seed,
Suraj Patil's avatar
Suraj Patil committed
60
61
)
from transformers.testing_utils import CaptureLogger
62
from transformers.utils import send_example_telemetry
Suraj Patil's avatar
Suraj Patil committed
63
64
65
66
67
68
69
70


logger = logging.getLogger(__name__)

MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
@dataclass
class TrainingArguments:
    output_dir: str = field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
    )
    overwrite_output_dir: bool = field(
        default=False,
        metadata={
            "help": (
                "Overwrite the content of the output directory. "
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
    )
    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
    adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
    seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
    push_to_hub: bool = field(
        default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
    )
    hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
    )
    hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})

    def __post_init__(self):
        if self.output_dir is not None:
            self.output_dir = os.path.expanduser(self.output_dir)

    def to_dict(self):
        """
        Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
        the token values by removing their value.
        """
        d = asdict(self)
        for k, v in d.items():
            if isinstance(v, Enum):
                d[k] = v.value
            if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
                d[k] = [x.value for x in v]
            if k.endswith("_token"):
                d[k] = f"<{k.upper()}>"
        return d


Suraj Patil's avatar
Suraj Patil committed
133
134
135
136
137
138
139
140
141
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
142
143
144
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
Suraj Patil's avatar
Suraj Patil committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
167
168
169
170
            "help": (
                "Floating-point format in which the model weights should be initialized and trained. Choose one of"
                " `[float32, float16, bfloat16]`."
            )
Suraj Patil's avatar
Suraj Patil committed
171
172
        },
    )
173
174
    token: str = field(
        default=None,
175
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
176
            "help": (
177
178
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
179
            )
180
181
        },
    )
182
183
184
185
186
187
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
Suraj Patil's avatar
Suraj Patil committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
210
211
212
213
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
Suraj Patil's avatar
Suraj Patil committed
214
215
216
217
218
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
221
222
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
Suraj Patil's avatar
Suraj Patil committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
    block_size: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
237
238
239
240
241
            "help": (
                "Optional input sequence length after tokenization. "
                "The training dataset will be truncated in block of this size for training. "
                "Default to the model max input length for single sentence inputs (take into account special tokens)."
            )
Suraj Patil's avatar
Suraj Patil committed
242
243
244
245
246
247
248
249
250
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
251
    keep_linebreaks: bool = field(
252
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
253
    )
Suraj Patil's avatar
Suraj Patil committed
254
255
256
257
258
259
260

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
261
262
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("train_file` should be a csv, json or text file.")
Suraj Patil's avatar
Suraj Patil committed
263
264
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
265
266
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`validation_file` should be a csv, json or text file.")
Suraj Patil's avatar
Suraj Patil committed
267
268
269
270
271
272
273
274
275


class TrainState(train_state.TrainState):
    dropout_rng: jnp.ndarray

    def replicate(self):
        return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))


276
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False, drop_last=True):
Suraj Patil's avatar
Suraj Patil committed
277
    """
278
279
    Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
    and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.
Suraj Patil's avatar
Suraj Patil committed
280
281
    """
    if shuffle:
282
        batch_idx = jax.random.permutation(rng, len(dataset))
283
        batch_idx = np.asarray(batch_idx)
Suraj Patil's avatar
Suraj Patil committed
284
    else:
285
        batch_idx = np.arange(len(dataset))
Suraj Patil's avatar
Suraj Patil committed
286

287
288
289
290
291
292
293
    if drop_last:
        steps_per_epoch = len(dataset) // batch_size
        batch_idx = batch_idx[: steps_per_epoch * batch_size]  # Skip incomplete batch.
        batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
    else:
        steps_per_epoch = math.ceil(len(dataset) / batch_size)
        batch_idx = np.array_split(batch_idx, steps_per_epoch)
Suraj Patil's avatar
Suraj Patil committed
294
295
296

    for idx in batch_idx:
        batch = dataset[idx]
297
        batch = {k: np.array(v) for k, v in batch.items()}
Suraj Patil's avatar
Suraj Patil committed
298
299
300
301

        yield batch


302
def write_train_metric(summary_writer, train_metrics, train_time, step):
Suraj Patil's avatar
Suraj Patil committed
303
304
305
306
307
308
309
310
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)

311
312

def write_eval_metric(summary_writer, eval_metrics, step):
Suraj Patil's avatar
Suraj Patil committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


def create_learning_rate_fn(
    train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
    """Returns a linear warmup, linear_decay learning rate function."""
    steps_per_epoch = train_ds_size // train_batch_size
    num_train_steps = steps_per_epoch * num_train_epochs
    warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
    )
    schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
    return schedule_fn


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

344
345
346
347
348
349
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

350
351
352
353
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_clm", model_args, data_args, framework="flax")

Suraj Patil's avatar
Suraj Patil committed
354
355
356
357
358
359
360
361
362
363
364
365
366
    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
367
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Suraj Patil's avatar
Suraj Patil committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

383
384
385
    # Set seed before initializing model.
    set_seed(training_args.seed)

386
387
    # Handle the repository creation
    if training_args.push_to_hub:
388
389
390
391
392
393
394
395
        # Retrieve of infer repo_name
        repo_name = training_args.hub_model_id
        if repo_name is None:
            repo_name = Path(training_args.output_dir).absolute().name
        # Create repo and retrieve repo_id
        repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
        # Clone repo locally
        repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)
396

Suraj Patil's avatar
Suraj Patil committed
397
398
399
400
401
402
403
404
405
406
407
408
    #  Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
409
410
411
412
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            keep_in_memory=False,
413
            token=model_args.token,
Suraj Patil's avatar
Suraj Patil committed
414
415
416
417
418
419
420
421
        )

        if "validation" not in dataset.keys():
            dataset["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
422
                token=model_args.token,
Suraj Patil's avatar
Suraj Patil committed
423
424
425
426
427
428
            )
            dataset["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
429
                token=model_args.token,
Suraj Patil's avatar
Suraj Patil committed
430
431
432
            )
    else:
        data_files = {}
433
        dataset_args = {}
Suraj Patil's avatar
Suraj Patil committed
434
435
436
437
438
439
440
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
441
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
442
443
444
445
446
        dataset = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            **dataset_args,
447
            token=model_args.token,
448
        )
449

450
451
        if "validation" not in dataset.keys():
            dataset["validation"] = load_dataset(
452
453
454
455
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
456
                **dataset_args,
457
                token=model_args.token,
458
            )
459
            dataset["train"] = load_dataset(
460
461
462
463
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
464
                **dataset_args,
465
                token=model_args.token,
466
            )
Suraj Patil's avatar
Suraj Patil committed
467
468
469
470
471
472
473
474
475
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
476
477
478
        config = AutoConfig.from_pretrained(
            model_args.config_name,
            cache_dir=model_args.cache_dir,
479
            token=model_args.token,
480
        )
Suraj Patil's avatar
Suraj Patil committed
481
    elif model_args.model_name_or_path:
482
483
484
        config = AutoConfig.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
485
            token=model_args.token,
486
        )
Suraj Patil's avatar
Suraj Patil committed
487
488
489
490
491
492
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
493
494
495
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
496
            token=model_args.token,
Suraj Patil's avatar
Suraj Patil committed
497
498
499
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
500
501
502
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
503
            token=model_args.token,
Suraj Patil's avatar
Suraj Patil committed
504
505
506
507
508
509
510
511
512
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = FlaxAutoModelForCausalLM.from_pretrained(
513
514
515
516
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
517
            token=model_args.token,
Suraj Patil's avatar
Suraj Patil committed
518
519
520
        )
    else:
        model = FlaxAutoModelForCausalLM.from_config(
521
522
523
            config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
Suraj Patil's avatar
Suraj Patil committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
        )

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = dataset["train"].column_names
    else:
        column_names = dataset["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

    def tokenize_function(examples):
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
543
544
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
Suraj Patil's avatar
Suraj Patil committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
            )
        return output

    tokenized_datasets = dataset.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if data_args.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > config.max_position_embeddings:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
            block_size = 1024
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warning(
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
575
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
Suraj Patil's avatar
Suraj Patil committed
576
577
578
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
579
580
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
Suraj Patil's avatar
Suraj Patil committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
608
609
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Suraj Patil's avatar
Suraj Patil committed
610
611
612
613
614
615

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
        if data_args.max_eval_samples is not None:
616
617
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
Suraj Patil's avatar
Suraj Patil committed
618
619

    # Enable tensorboard only on the master node
620
    has_tensorboard = is_tensorboard_available()
Suraj Patil's avatar
Suraj Patil committed
621
    if has_tensorboard and jax.process_index() == 0:
622
623
624
625
626
627
628
629
630
631
632
633
634
635
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )
Suraj Patil's avatar
Suraj Patil committed
636
637
638
639
640
641
642
643

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
644
645
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()
Suraj Patil's avatar
Suraj Patil committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
664
665
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
666
667
668
669
670
671
        layer_norm_named_params = {
            layer[-2:]
            for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        }
672
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
Suraj Patil's avatar
Suraj Patil committed
673
674
675
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
    if training_args.adafactor:
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=linear_decay_lr_schedule_fn,
        )
    else:
        optimizer = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            eps=training_args.adam_epsilon,
            weight_decay=training_args.weight_decay,
            mask=decay_mask_fn,
        )
Suraj Patil's avatar
Suraj Patil committed
691
692

    # Setup train state
693
    state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng)
Suraj Patil's avatar
Suraj Patil committed
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

    def loss_fn(logits, labels):
        shift_logits = logits[..., :-1, :]
        shift_labels = labels[..., 1:]
        loss = optax.softmax_cross_entropy(shift_logits, onehot(shift_labels, shift_logits.shape[-1]))
        return loss.mean()

    # Define gradient update step fn
    def train_step(state, batch):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = loss_fn(logits, labels)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)

        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")
        logits = model(**batch, params=params, train=False)[0]
        loss = loss_fn(logits, labels)

        # summarize metrics
        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return metrics

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
    p_eval_step = jax.pmap(eval_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {train_batch_size}")
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
748
    train_metrics = []
749
    epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0)
Suraj Patil's avatar
Suraj Patil committed
750
751
752
753
754
755
756
757
758
759
760
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # Generate an epoch by shuffling sampling indices from the train dataset
        train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
        steps_per_epoch = len(train_dataset) // train_batch_size
        # train
761
        for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
Suraj Patil's avatar
Suraj Patil committed
762
            batch = next(train_loader)
763
            batch = shard(batch)
Suraj Patil's avatar
Suraj Patil committed
764
765
766
            state, train_metric = p_train_step(state, batch)
            train_metrics.append(train_metric)

767
            cur_step = epoch * (len(train_dataset) // train_batch_size) + step
Suraj Patil's avatar
Suraj Patil committed
768

769
            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
770
771
772
773
774
                # Save metrics
                train_metric = unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)
Suraj Patil's avatar
Suraj Patil committed
775

776
                epochs.write(
Sylvain Gugger's avatar
Sylvain Gugger committed
777
778
                    f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate:"
                    f" {train_metric['learning_rate'].mean()})"
779
780
781
                )

                train_metrics = []
Suraj Patil's avatar
Suraj Patil committed
782

783
784
785
            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                # ======================== Evaluating ==============================
                eval_metrics = []
786
787
                eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False)
                eval_steps = math.ceil(len(eval_dataset) / eval_batch_size)
788
789
790
                for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
                    # Model forward
                    batch = next(eval_loader)
791
792
793
                    metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                        state.params, batch, min_device_batch=per_device_eval_batch_size
                    )
794
795
796
797
                    eval_metrics.append(metrics)

                # normalize eval metrics
                eval_metrics = get_metrics(eval_metrics)
798
                eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
799
800
801
802
803
804
805

                try:
                    eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
                except OverflowError:
                    eval_metrics["perplexity"] = float("inf")

                # Print metrics and update progress bar
Sylvain Gugger's avatar
Sylvain Gugger committed
806
807
808
809
                desc = (
                    f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity:"
                    f" {eval_metrics['perplexity']})"
                )
810
811
                epochs.write(desc)
                epochs.desc = desc
Suraj Patil's avatar
Suraj Patil committed
812

813
814
815
816
817
818
819
820
                # Save metrics
                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if cur_step % training_args.save_steps == 0 and cur_step > 0:
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    params = jax.device_get(unreplicate(state.params))
821
822
823
824
                    model.save_pretrained(training_args.output_dir, params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
                        repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False)
Suraj Patil's avatar
Suraj Patil committed
825

Suraj Patil's avatar
Suraj Patil committed
826
827
828
    # Eval after training
    if training_args.do_eval:
        eval_metrics = []
829
830
        eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False)
        eval_steps = math.ceil(len(eval_dataset) / eval_batch_size)
Suraj Patil's avatar
Suraj Patil committed
831
832
        for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
            # Model forward
833
834
835
836
            batch = next(eval_loader)
            metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                state.params, batch, min_device_batch=per_device_eval_batch_size
            )
Suraj Patil's avatar
Suraj Patil committed
837
838
839
840
            eval_metrics.append(metrics)

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)
841
        eval_metrics = jax.tree_util.tree_map(lambda x: jnp.mean(x).item(), eval_metrics)
Suraj Patil's avatar
Suraj Patil committed
842
843
844
845
846
847
848
849
850
851
852
853

        try:
            eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
        except OverflowError:
            eval_metrics["perplexity"] = float("inf")

        if jax.process_index() == 0:
            eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
            path = os.path.join(training_args.output_dir, "eval_results.json")
            with open(path, "w") as f:
                json.dump(eval_metrics, f, indent=4, sort_keys=True)

Suraj Patil's avatar
Suraj Patil committed
854
855
856

if __name__ == "__main__":
    main()