test_tokenization_t5.py 9.07 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
import unittest
thomwolf's avatar
thomwolf committed
18

19
from transformers import SPIECE_UNDERLINE, BatchEncoding, T5Tokenizer, T5TokenizerFast
20
from transformers.file_utils import cached_property, is_tf_available, is_torch_available
21
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers
thomwolf's avatar
thomwolf committed
22

23
from .test_tokenization_common import TokenizerTesterMixin
thomwolf's avatar
thomwolf committed
24

Aymeric Augustin's avatar
Aymeric Augustin committed
25

26
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
27

28
29
30
31
32
33
if is_torch_available():
    FRAMEWORK = "pt"
elif is_tf_available():
    FRAMEWORK = "tf"
else:
    FRAMEWORK = "jax"
34

thomwolf's avatar
thomwolf committed
35

36
37
@require_sentencepiece
@require_tokenizers
38
class T5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
39
40

    tokenizer_class = T5Tokenizer
41
42
    rust_tokenizer_class = T5TokenizerFast
    test_rust_tokenizer = True
thomwolf's avatar
thomwolf committed
43
44

    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
45
        super().setUp()
thomwolf's avatar
thomwolf committed
46
47

        # We have a SentencePiece fixture for testing
48
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
49
50
51
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
52
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
53

54
55
        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])
thomwolf's avatar
thomwolf committed
56

57
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382])
thomwolf's avatar
thomwolf committed
58

59
        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
thomwolf's avatar
thomwolf committed
60
        self.assertListEqual(
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "茅",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4])
thomwolf's avatar
thomwolf committed
88
89

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )
116

117
118
119
120
    @cached_property
    def t5_base_tokenizer(self):
        return T5Tokenizer.from_pretrained("t5-base")

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    @cached_property
    def t5_base_tokenizer_fast(self):
        return T5TokenizerFast.from_pretrained("t5-base")

    def get_tokenizer(self, **kwargs) -> T5Tokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, pad_token=None, **kwargs)

    def get_rust_tokenizer(self, **kwargs) -> T5TokenizerFast:
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, pad_token=None, **kwargs)

    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence = "I was born in 92000, and this is fals茅."

        tokens = tokenizer.tokenize(sequence)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        rust_tokenizer = self.get_rust_tokenizer()
        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

153
154
155
156
157
158
    def test_eos_treatment(self):
        tokenizer = self.t5_base_tokenizer
        batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"])
        batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""])
        self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"])

159
    def test_prepare_batch(self):
160
        tokenizer = self.t5_base_tokenizer
161
162
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, tokenizer.eos_token_id]
163
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
164
        self.assertIsInstance(batch, BatchEncoding)
165
166
167
168
169
170

        if FRAMEWORK != "jax":
            result = list(batch.input_ids.numpy()[0])
        else:
            result = list(batch.input_ids.tolist()[0])

171
        self.assertListEqual(expected_src_tokens, result)
172

173
174
        self.assertEqual((2, 9), batch.input_ids.shape)
        self.assertEqual((2, 9), batch.attention_mask.shape)
175

176
    def test_empty_target_text(self):
177
        tokenizer = self.t5_base_tokenizer
178
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
179
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
180
181
182
183
184
185
        # check if input_ids are returned and no decoder_input_ids
        self.assertIn("input_ids", batch)
        self.assertIn("attention_mask", batch)
        self.assertNotIn("decoder_input_ids", batch)
        self.assertNotIn("decoder_attention_mask", batch)

186
    def test_max_length(self):
187
        tokenizer = self.t5_base_tokenizer
188
189
190
191
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
192
193
194
195
196
        with tokenizer.as_target_tokenizer():
            targets = tokenizer(
                tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK
            )
        self.assertEqual(32, targets["input_ids"].shape[1])
197
198

    def test_outputs_not_longer_than_maxlen(self):
199
        tokenizer = self.t5_base_tokenizer
200

201
202
        batch = tokenizer(
            ["I am a small frog" * 1000, "I am a small frog"], padding=True, truncation=True, return_tensors=FRAMEWORK
203
204
205
206
207
        )
        self.assertIsInstance(batch, BatchEncoding)
        self.assertEqual(batch.input_ids.shape, (2, 512))

    def test_eos_in_input(self):
208
        tokenizer = self.t5_base_tokenizer
209
        src_text = ["A long paragraph for summarization. </s>"]
210
        tgt_text = ["Summary of the text. </s>"]
211
        expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, 1]
212
        expected_tgt_tokens = [20698, 13, 8, 1499, 5, 1]
213

214
215
216
        batch = tokenizer(src_text)
        with tokenizer.as_target_tokenizer():
            targets = tokenizer(tgt_text)
217

218
219
        self.assertEqual(expected_src_tokens, batch["input_ids"][0])
        self.assertEqual(expected_tgt_tokens, targets["input_ids"][0])
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
    def test_token_type_ids(self):
        src_text_1 = ["A first paragraph for summarization."]
        src_text_2 = ["A second paragraph for summarization."]

        fast_token_type_ids = self.t5_base_tokenizer_fast(
            src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True
        ).token_type_ids
        slow_token_type_ids = self.t5_base_tokenizer(
            src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True
        ).token_type_ids

        self.assertEqual(slow_token_type_ids, fast_token_type_ids)
        self.assertEqual(len(slow_token_type_ids[0]), 18)

235
236
237
238
239
240
241
242
243
244
245
246
247
248
    def test_fast_and_slow_same_result(self):
        src_text = "<pad> Today is <unk> nice day </s>"
        tgt_ids = [0, 1960, 19, 2, 1245, 239, 1]
        tgt_text = "<pad> Today is<unk> nice day</s>"

        fast_ids = self.t5_base_tokenizer_fast(src_text, add_special_tokens=False).input_ids
        slow_ids = self.t5_base_tokenizer(src_text, add_special_tokens=False).input_ids
        self.assertEqual(tgt_ids, fast_ids)
        self.assertEqual(tgt_ids, slow_ids)

        fast_text = self.t5_base_tokenizer_fast.decode(fast_ids)
        slow_text = self.t5_base_tokenizer.decode(fast_ids)
        self.assertEqual(tgt_text, fast_text)
        self.assertEqual(tgt_text, slow_text)