test_tokenization_t5.py 6.95 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import os
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import BatchEncoding
21
from transformers.file_utils import cached_property
22
from transformers.testing_utils import _torch_available
23
from transformers.tokenization_t5 import T5Tokenizer
thomwolf's avatar
thomwolf committed
24

25
from .test_tokenization_common import TokenizerTesterMixin
thomwolf's avatar
thomwolf committed
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27

28
29
SPIECE_UNDERLINE = "▁"

30
31
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")

32
33
FRAMEWORK = "pt" if _torch_available else "tf"

thomwolf's avatar
thomwolf committed
34

35
class T5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
36
37
38
39

    tokenizer_class = T5Tokenizer

    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
40
        super().setUp()
thomwolf's avatar
thomwolf committed
41
42

        # We have a SentencePiece fixture for testing
43
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
44
45
46
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
47
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
48

49
50
        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
thomwolf's avatar
thomwolf committed
51

52
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382])
thomwolf's avatar
thomwolf committed
53

54
        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
thomwolf's avatar
thomwolf committed
55
        self.assertListEqual(
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "é",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4])
thomwolf's avatar
thomwolf committed
83
84

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )
111

112
113
114
115
116
117
118
119
120
121
    @cached_property
    def t5_base_tokenizer(self):
        return T5Tokenizer.from_pretrained("t5-base")

    def test_eos_treatment(self):
        tokenizer = self.t5_base_tokenizer
        batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"])
        batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""])
        self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"])

122
    def test_prepare_seq2seq_batch(self):
123
        tokenizer = self.t5_base_tokenizer
124
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
125
126
127
128
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
129
        expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, tokenizer.eos_token_id]
Lysandre's avatar
Lysandre committed
130
131
132
133
134
        batch = tokenizer.prepare_seq2seq_batch(
            src_text,
            tgt_texts=tgt_text,
            return_tensors=FRAMEWORK,
        )
135
136
137
        self.assertIsInstance(batch, BatchEncoding)
        result = list(batch.input_ids.numpy()[0])
        self.assertListEqual(expected_src_tokens, result)
138

139
140
        self.assertEqual((2, 9), batch.input_ids.shape)
        self.assertEqual((2, 9), batch.attention_mask.shape)
141

142
143
144
145
        # Test that special tokens are reset
        self.assertEqual(tokenizer.prefix_tokens, [])

    def test_empty_target_text(self):
146
        tokenizer = self.t5_base_tokenizer
147
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
148
149
150
151
152
153
154
155
        batch = tokenizer.prepare_seq2seq_batch(src_text, return_tensors=FRAMEWORK)
        # check if input_ids are returned and no decoder_input_ids
        self.assertIn("input_ids", batch)
        self.assertIn("attention_mask", batch)
        self.assertNotIn("decoder_input_ids", batch)
        self.assertNotIn("decoder_attention_mask", batch)

    def test_max_target_length(self):
156
        tokenizer = self.t5_base_tokenizer
157
        src_text = ["A short paragraph for summarization.", "Another short paragraph for summarization."]
158
159
160
161
162
163
164
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        batch = tokenizer.prepare_seq2seq_batch(
            src_text, tgt_texts=tgt_text, max_target_length=32, padding="max_length", return_tensors=FRAMEWORK
        )
165
        self.assertEqual(32, batch["labels"].shape[1])
166
167
168
169
170

        # test None max_target_length
        batch = tokenizer.prepare_seq2seq_batch(
            src_text, tgt_texts=tgt_text, max_length=32, padding="max_length", return_tensors=FRAMEWORK
        )
171
        self.assertEqual(32, batch["labels"].shape[1])
172
173

    def test_outputs_not_longer_than_maxlen(self):
174
        tokenizer = self.t5_base_tokenizer
175
176
177
178
179
180
181
182

        batch = tokenizer.prepare_seq2seq_batch(
            ["I am a small frog" * 1000, "I am a small frog"], return_tensors=FRAMEWORK
        )
        self.assertIsInstance(batch, BatchEncoding)
        self.assertEqual(batch.input_ids.shape, (2, 512))

    def test_eos_in_input(self):
183
        tokenizer = self.t5_base_tokenizer
184
        src_text = ["A long paragraph for summarization. </s>"]
185
        tgt_text = ["Summary of the text. </s>"]
186
        expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, 1]
187
188
189
190
191
        expected_tgt_tokens = [0, 20698, 13, 8, 1499, 5, 1]

        batch = tokenizer.prepare_seq2seq_batch(src_text, tgt_texts=tgt_text, return_tensors=FRAMEWORK)

        src_ids = list(batch.input_ids.numpy()[0])
192
        tgt_ids = list(batch.labels.numpy()[0])
193
194
195

        self.assertEqual(expected_src_tokens, src_ids)
        self.assertEqual(expected_tgt_tokens, tgt_ids)