modeling_bert.py 66.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21

import json
import logging
thomwolf's avatar
thomwolf committed
22
23
24
25
import math
import os
import sys
from io import open
thomwolf's avatar
thomwolf committed
26
27
28

import torch
from torch import nn
29
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
30

31
from .file_utils import cached_path
32
from .model_utils import WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer
thomwolf's avatar
thomwolf committed
33
34
35
36

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
37
38
39
40
41
42
43
44
45
46
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
47
48
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
49
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
50
}
51

52
53
54
55
56
57
58
59
60
61
62
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
thomwolf's avatar
thomwolf committed
63
64
65
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
thomwolf's avatar
thomwolf committed
66
67
}

thomwolf's avatar
thomwolf committed
68

69
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
70
71
    """ Load tf checkpoints in a pytorch model
    """
72
73
74
75
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
76
    except ImportError:
77
78
79
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
96
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
111
112
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
113
            else:
114
115
116
117
118
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
                    print("Skipping {}".format("/".join(name)))
                    continue
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
136
137
138
139
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
140
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
141
142
143
144
145
146
147
148
149
150
151
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


152
class BertConfig(PretrainedConfig):
153
154
155
    r"""
        :class:`~pytorch_pretrained_bert.BertConfig` is the configuration class to store the configuration of a
        `BertModel`.
156

157
        Arguments:
thomwolf's avatar
thomwolf committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
178
            layer_norm_eps: The epsilon used by LayerNorm.
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    """
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(self,
                 vocab_size_or_config_json_file=30522,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12,
                 **kwargs):
        """Constructs BertConfig.
thomwolf's avatar
thomwolf committed
197
        """
thomwolf's avatar
thomwolf committed
198
        super(BertConfig, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
199
200
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
201
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
217
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
218
219
220
221
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

222

223
224
225
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
226
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
thomwolf's avatar
thomwolf committed
241
242
243
244
245
246

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
247
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
248
249
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
250
251
252

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
253
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
274
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
275
276
277
278
279
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
280
        self.output_attentions = config.output_attentions
281

thomwolf's avatar
thomwolf committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

297
    def forward(self, hidden_states, attention_mask, head_mask=None):
thomwolf's avatar
thomwolf committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

319
320
321
322
        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

thomwolf's avatar
thomwolf committed
323
        context_layer = torch.matmul(attention_probs, value_layer)
324

thomwolf's avatar
thomwolf committed
325
326
327
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
328

329
        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
330
        return outputs
thomwolf's avatar
thomwolf committed
331
332
333
334
335
336


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
337
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
338
339
340
341
342
343
344
345
346
347
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
348
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
349
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
350
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
351
352
        self.output = BertSelfOutput(config)

thomwolf's avatar
thomwolf committed
353
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
354
355
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
356
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
thomwolf's avatar
thomwolf committed
357
358
359
360
361
362
363
364
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
365
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
thomwolf's avatar
thomwolf committed
366
367
368
369
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

370
    def forward(self, input_tensor, attention_mask, head_mask=None):
371
372
        self_outputs = self.self(input_tensor, attention_mask, head_mask)
        attention_output = self.output(self_outputs[0], input_tensor)
373
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
374
        return outputs
thomwolf's avatar
thomwolf committed
375
376
377
378
379
380


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
381
382
383
384
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
385
386
387
388
389
390
391
392
393
394
395

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
396
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
397
398
399
400
401
402
403
404
405
406
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
407
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
408
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
409
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
410
411
412
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

413
    def forward(self, hidden_states, attention_mask, head_mask=None):
414
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
415
416
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
thomwolf's avatar
thomwolf committed
417
        layer_output = self.output(intermediate_output, attention_output)
418
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
419
        return outputs
thomwolf's avatar
thomwolf committed
420
421
422


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
423
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
424
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
425
426
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
427
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
428

429
    def forward(self, hidden_states, attention_mask, head_mask=None):
430
431
        all_hidden_states = ()
        all_attentions = ()
432
        for i, layer_module in enumerate(self.layer):
433
            if self.output_hidden_states:
434
                all_hidden_states = all_hidden_states + (hidden_states,)
435
436
437
438

            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i])
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
439
            if self.output_attentions:
440
                all_attentions = all_attentions + (layer_outputs[1],)
441
442
443

        # Add last layer
        if self.output_hidden_states:
444
            all_hidden_states = all_hidden_states + (hidden_states,)
445

446
        outputs = (hidden_states,)
447
        if self.output_hidden_states:
448
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
449
        if self.output_attentions:
450
            outputs = outputs + (all_attentions,)
451
        return outputs  # outputs, (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
473
474
475
476
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
477
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
478
479
480
481
482
483
484
485
486
487
488
489

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)
490
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
491
492
493
494
495
496

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
                                 bert_model_embedding_weights.size(0),
                                 bias=False)
497
498
499
500
501
502

        if self.torchscript:
            self.decoder.weight = nn.Parameter(bert_model_embedding_weights.clone())
        else:
            self.decoder.weight = bert_model_embedding_weights

thomwolf's avatar
thomwolf committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
        self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertPreTrainingHeads, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


543
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
544
545
546
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
547
548
549
550
551
    config_class = BertConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

552
553
554
    def __init__(self, *inputs, **kwargs):
        super(BertPreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
555
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
556
557
558
559
560
561
562
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
563
564
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
565
566
567
568
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
569
class BertModel(BertPreTrainedModel):
570
571
572
573
574
575
576
577
578
579
580
    r"""BERT model ("Bidirectional Embedding Representations from a Transformer").

    :class:`~pytorch_pretrained_bert.BertModel` is the basic BERT Transformer model with a layer of summed token, \
    position and sequence embeddings followed by a series of identical self-attention blocks (12 for BERT-base, 24 \
    for BERT-large). The model is instantiated with the following parameters.

    Arguments:
        config: a BertConfig class instance with the configuration to build a new model
        output_attentions: If True, also output attentions weights computed by the model at each layer. Default: False
        output_hidden_states: If True, also output hidden states computed by the model at each layer. Default: Fals

thomwolf's avatar
thomwolf committed
581

582
    Example::
thomwolf's avatar
thomwolf committed
583

584
585
586
587
        config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = modeling.BertModel(config=config)
thomwolf's avatar
thomwolf committed
588
589

    """
thomwolf's avatar
thomwolf committed
590
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
591
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
592

thomwolf's avatar
thomwolf committed
593
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
594
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
595
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
596

thomwolf's avatar
thomwolf committed
597
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
598

thomwolf's avatar
thomwolf committed
599
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
600
601
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
602
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
603
604
605
606
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

607
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, head_mask=None):
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.


        Arguments:
            input_ids: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the \
                vocabulary(see the tokens pre-processing logic in the scripts `run_bert_extract_features.py`, \
                `run_bert_classifier.py` and `run_bert_squad.py`)
            token_type_ids: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token \
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
                a `sentence B` token (see BERT paper for more details).
            attention_mask: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices \
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
                input sequence length in the current batch. It's the mask that we typically use for attention when \
                a batch has varying length sentences.
            output_all_encoded_layers: boolean which controls the content of the `encoded_layers` output as described \
            below. Default: `True`.
            head_mask: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 \
            and 1. It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 \
            => head is not masked.


        Returns:
            A tuple composed of (encoded_layers, pooled_output). Encoded layers are controlled by the \
            ``output_all_encoded_layers`` argument.

            If ``output_all_encoded_layers`` is set to True, outputs a list of the full sequences of \
            encoded-hidden-states at the end of each attention \
            block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a\
            torch.FloatTensor of size [batch_size, sequence_length, hidden_size].

            If set to False, outputs only the full sequence of hidden-states corresponding \
            to the last attention block of shape [batch_size, sequence_length, hidden_size].

            ``pooled_output`` is a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a \
            classifier pretrained on top of the hidden state associated to the first character of the \
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])


            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
            # or
            all_encoder_layers, pooled_output = model.forward(input_ids, token_type_ids, input_mask)


        """
thomwolf's avatar
thomwolf committed
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

thomwolf's avatar
thomwolf committed
680
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
681
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
682
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
683
684
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
685
686
        if head_mask is not None:
            if head_mask.dim() == 1:
687
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
688
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
689
            elif head_mask.dim() == 2:
690
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
thomwolf's avatar
thomwolf committed
691
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
692
693
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
694

thomwolf's avatar
thomwolf committed
695
        embedding_output = self.embeddings(input_ids, token_type_ids)
696
697
698
699
        encoder_outputs = self.encoder(embedding_output,
                                       extended_attention_mask,
                                       head_mask=head_mask)
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
700
        pooled_output = self.pooler(sequence_output)
701

702
        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
703
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
704
705


thomwolf's avatar
thomwolf committed
706
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
707
708
709
710
711
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.

712
    Args:
713
714
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
715
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
716

717
718
719
720
721
722
    Example ::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForPreTraining(config)
thomwolf's avatar
thomwolf committed
723
    """
thomwolf's avatar
thomwolf committed
724
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
725
        super(BertForPreTraining, self).__init__(config)
726

thomwolf's avatar
thomwolf committed
727
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
728
        self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
thomwolf's avatar
thomwolf committed
729

thomwolf's avatar
thomwolf committed
730
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
731

732
733
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
                next_sentence_label=None, head_mask=None):
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Args:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
            `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
                with indices selected in [0, 1].
                0 => next sentence is the continuation, 1 => next sentence is a random sentence.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Returns:
            Either a torch.Tensor or tuple(torch.Tensor, torch.Tensor).

            if ``masked_lm_labels`` and ``next_sentence_label`` are not ``None``, outputs the total_loss which is the \
             sum of the masked language modeling loss and the next \
            sentence classification loss.

            if ``masked_lm_labels`` or ``next_sentence_label` is `None``, outputs a tuple comprising:
                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
                - the next sentence classification logits of shape [batch_size, 2].

        Example ::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
                num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

            model = BertForPreTraining(config)
            masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
            # or
            masked_lm_logits_scores, seq_relationship_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
784
785
786
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
787
788
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

789
        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
790

thomwolf's avatar
thomwolf committed
791
792
        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
793
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
794
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
795
            total_loss = masked_lm_loss + next_sentence_loss
796
            outputs = (total_loss,) + outputs
797
798

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
799
800


thomwolf's avatar
thomwolf committed
801
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
802
803
804
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

805
    Args:
806
807
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
808
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
809

810
811
812
813
814
815
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForMaskedLM(config)
thomwolf's avatar
thomwolf committed
816
    """
thomwolf's avatar
thomwolf committed
817
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
818
        super(BertForMaskedLM, self).__init__(config)
thomwolf's avatar
thomwolf committed
819

thomwolf's avatar
thomwolf committed
820
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
821
        self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
thomwolf's avatar
thomwolf committed
822

thomwolf's avatar
thomwolf committed
823
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
824

825
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Args:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
            `head_mask`: an optional torch.LongTensor of shape [num_heads] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            Masked language modeling loss if `masked_lm_labels` is specified, masked language modeling
            logits of shape [batch_size, sequence_length, vocab_size] otherwise.

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
            # or
            masked_lm_logits_scores = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
865
866
867
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
868
869
        prediction_scores = self.cls(sequence_output)

870
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention is they are here
thomwolf's avatar
thomwolf committed
871
872
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
873
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
874
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
875
876

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
877
878


thomwolf's avatar
thomwolf committed
879
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
880
881
882
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

883
    Args:
884
885
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
886
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
887

888
889
890
891
892
893
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForNextSentencePrediction(config)
thomwolf's avatar
thomwolf committed
894
    """
thomwolf's avatar
thomwolf committed
895
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
896
        super(BertForNextSentencePrediction, self).__init__(config)
thomwolf's avatar
thomwolf committed
897

thomwolf's avatar
thomwolf committed
898
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
899
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
900

thomwolf's avatar
thomwolf committed
901
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
902

903
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Args:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
                with indices selected in [0, 1].
                0 => next sentence is the continuation, 1 => next sentence is a random sentence.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between
                0 and 1.It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked,
                0.0 => head is not masked.

        Returns:
            If `next_sentence_label` is specified, outputs the total_loss which is the sum of the masked language \
            modeling loss and the next sentence classification loss.
            if `next_sentence_label` is `None`, outputs the next sentence classification logits of shape [batch_size, 2].


        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
            # or
            seq_relationship_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
942
943
944
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

945
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
946

947
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
948
949
        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
950
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
951
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
952
953

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
954
955


thomwolf's avatar
thomwolf committed
956
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
957
958
959
960
961
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
962
963
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
964
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
965
966
        `num_labels`: the number of classes for the classifier. Default = 2.

967
968
969
970
971
972
973
974
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        num_labels = 2

        model = BertForSequenceClassification(config, num_labels)
thomwolf's avatar
thomwolf committed
975
    """
thomwolf's avatar
thomwolf committed
976
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
977
        super(BertForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
978
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
979

thomwolf's avatar
thomwolf committed
980
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
981
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
982
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
983

thomwolf's avatar
thomwolf committed
984
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
985

986
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Parameters:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
                with indices selected in [0, ..., num_labels].
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if `labels` is not `None`, outputs the CrossEntropy classification loss of the output with the labels.
            if `labels` is `None`, outputs the classification logits of shape `[batch_size, num_labels]`.

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            logits = model(input_ids, token_type_ids, input_mask)
            # or
            logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1021
1022
1023
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
1024
1025
1026
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

1027
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1028

thomwolf's avatar
thomwolf committed
1029
        if labels is not None:
1030
1031
1032
1033
1034
1035
1036
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1037
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1038
1039

        return outputs  # (loss), logits, (hidden_states), (attentions)
1040
1041


thomwolf's avatar
thomwolf committed
1042
class BertForMultipleChoice(BertPreTrainedModel):
1043
    """BERT model for multiple choice tasks.
1044
    This module is composed of the BERT model with a linear layer on top of the pooled output.
1045

1046
    Parameters:
1047
1048
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1049
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
1050

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
    Example::

        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
        input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
        token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForMultipleChoice(config)
        logits = model(input_ids, token_type_ids, input_mask)
1062
    """
thomwolf's avatar
thomwolf committed
1063
    def __init__(self, config):
1064
        super(BertForMultipleChoice, self).__init__(config)
thomwolf's avatar
thomwolf committed
1065

thomwolf's avatar
thomwolf committed
1066
        self.bert = BertModel(config)
1067
1068
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1069

thomwolf's avatar
thomwolf committed
1070
        self.apply(self.init_weights)
1071

1072
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Parameters:
            `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
                with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
                and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
                with indices selected in [0, ..., num_choices].
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if `labels` is not `None`, outputs the CrossEntropy classification loss of the output with the labels.
            if `labels` is `None`, outputs the classification logits of shape [batch_size, num_labels].

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
            input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
            token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
            config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
                num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

            model = BertForMultipleChoice(config)
            logits = model(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1108
1109
1110
        """ Input shapes should be [bsz, num choices, seq length] """
        num_choices = input_ids.shape[1]

1111
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
1112
1113
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
thomwolf's avatar
thomwolf committed
1114
1115
1116
        outputs = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

1117
1118
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1119
        reshaped_logits = logits.view(-1, num_choices)
1120

1121
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1122

1123
1124
1125
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1126
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1127
1128

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1129
1130


thomwolf's avatar
thomwolf committed
1131
class BertForTokenClassification(BertPreTrainedModel):
1132
1133
1134
1135
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

1136
    Parameters:
1137
1138
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1139
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
1140
1141
        `num_labels`: the number of classes for the classifier. Default = 2.

1142
1143
1144
1145
1146
1147
1148
1149
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        num_labels = 2

        model = BertForTokenClassification(config, num_labels)
1150
    """
thomwolf's avatar
thomwolf committed
1151
    def __init__(self, config):
1152
        super(BertForTokenClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1153
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1154

thomwolf's avatar
thomwolf committed
1155
        self.bert = BertModel(config)
1156
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1157
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1158

thomwolf's avatar
thomwolf committed
1159
        self.apply(self.init_weights)
1160

1161
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Parameters:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
                with indices selected in [0, ..., num_labels].
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if `labels` is not `None`, outputs the CrossEntropy classification loss of the output with the labels.
            if `labels` is `None`, outputs the classification logits of shape [batch_size, sequence_length, num_labels].

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            logits = model(input_ids, token_type_ids, input_mask)
            # or
            logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1196
1197
1198
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

1199
1200
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1201

1202
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1203
1204
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1205
1206
1207
1208
1209
1210
1211
1212
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1213
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1214
1215

        return outputs  # (loss), logits, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1216
1217


thomwolf's avatar
thomwolf committed
1218
class BertForQuestionAnswering(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1219
1220
1221
1222
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

1223
    Parameters:
1224
1225
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1226
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1227

1228
1229
1230
1231
1232
1233
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForQuestionAnswering(config)
thomwolf's avatar
thomwolf committed
1234
    """
thomwolf's avatar
thomwolf committed
1235
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1236
        super(BertForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1237
1238
1239
1240
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1241

thomwolf's avatar
thomwolf committed
1242
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1243

thomwolf's avatar
thomwolf committed
1244
1245
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,
                end_positions=None, head_mask=None):
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
        """
        Parameters:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
            `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if `start_positions` and `end_positions` are not `None`, outputs the total_loss which is the sum of the
            CrossEntropy loss for the start and end token positions.
            if `start_positions` or `end_positions` is `None`, outputs a tuple of start_logits, end_logits which are the
            logits respectively for the start and end position tokens of shape [batch_size, sequence_length].

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1282
1283
1284
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1285
1286
1287
1288
1289
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1290
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1306
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1307
1308

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)