test_modeling_flaubert.py 13.8 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
Lysandre's avatar
Lysandre committed
21
22

from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Lysandre's avatar
Lysandre committed
24
25
26


if is_torch_available():
27
28
    import torch

Lysandre's avatar
Lysandre committed
29
30
    from transformers import (
        FlaubertConfig,
31
        FlaubertForMultipleChoice,
Lysandre's avatar
Lysandre committed
32
33
34
        FlaubertForQuestionAnswering,
        FlaubertForQuestionAnsweringSimple,
        FlaubertForSequenceClassification,
35
        FlaubertForTokenClassification,
36
37
        FlaubertModel,
        FlaubertWithLMHeadModel,
Lysandre's avatar
Lysandre committed
38
    )
39
    from transformers.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre's avatar
Lysandre committed
40
41


42
43
class FlaubertModelTester(object):
    def __init__(
Lysandre's avatar
Lysandre committed
44
45
        self,
        parent,
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 12
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = None
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
78
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
97
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

        config = FlaubertConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
Sylvain Gugger's avatar
Sylvain Gugger committed
116
            return_dict=True,
Lysandre's avatar
Lysandre committed
117
118
        )

119
        return (
Lysandre's avatar
Style  
Lysandre committed
120
121
122
123
124
125
126
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
127
            choice_labels,
Lysandre's avatar
Style  
Lysandre committed
128
            input_mask,
129
130
131
132
133
134
135
136
137
138
139
        )

    def create_and_check_flaubert_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
140
        choice_labels,
141
142
143
144
145
        input_mask,
    ):
        model = FlaubertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
148
        result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
        result = model(input_ids, langs=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
149
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
150
151
152
153
154
155
156
157
158
159

    def create_and_check_flaubert_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
160
        choice_labels,
161
162
163
164
165
166
        input_mask,
    ):
        model = FlaubertWithLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
167
        result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
168
169
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
170
171
172
173
174
175
176
177
178
179

    def create_and_check_flaubert_simple_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
180
        choice_labels,
181
182
183
184
185
186
        input_mask,
    ):
        model = FlaubertForQuestionAnsweringSimple(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
187
        result = model(input_ids)
188

Sylvain Gugger's avatar
Sylvain Gugger committed
189
        result = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
190
191
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
192
193
194
195
196
197
198
199
200
201

    def create_and_check_flaubert_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
202
        choice_labels,
203
204
205
206
207
208
        input_mask,
    ):
        model = FlaubertForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
209
        result = model(input_ids)
210

Sylvain Gugger's avatar
Sylvain Gugger committed
211
        result_with_labels = model(
Lysandre's avatar
Style  
Lysandre committed
212
            input_ids,
213
214
215
216
217
218
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )
Lysandre's avatar
Lysandre committed
219

Sylvain Gugger's avatar
Sylvain Gugger committed
220
        result_with_labels = model(
221
222
223
224
225
226
            input_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )
Lysandre's avatar
Lysandre committed
227

Sylvain Gugger's avatar
Sylvain Gugger committed
228
        (total_loss,) = result_with_labels.to_tuple()
Lysandre's avatar
Lysandre committed
229

Sylvain Gugger's avatar
Sylvain Gugger committed
230
        result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Lysandre's avatar
Lysandre committed
231

Sylvain Gugger's avatar
Sylvain Gugger committed
232
        (total_loss,) = result_with_labels.to_tuple()
233

Stas Bekman's avatar
Stas Bekman committed
234
235
236
237
238
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
239
        )
Stas Bekman's avatar
Stas Bekman committed
240
241
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
242
        )
Stas Bekman's avatar
Stas Bekman committed
243
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
244
245
246
247
248
249
250
251
252
253

    def create_and_check_flaubert_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
254
        choice_labels,
255
256
257
258
259
260
        input_mask,
    ):
        model = FlaubertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
261
262
        result = model(input_ids)
        result = model(input_ids, labels=sequence_labels)
263

Stas Bekman's avatar
Stas Bekman committed
264
265
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
266

267
268
269
270
271
272
273
274
275
    def create_and_check_flaubert_token_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
276
        choice_labels,
277
278
279
280
281
282
283
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = FlaubertForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
284
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
285
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    def create_and_check_flaubert_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = FlaubertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
306
        result = model(
307
308
309
310
311
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
312
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
313

314
315
316
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
Lysandre's avatar
Style  
Lysandre committed
317
318
319
320
321
322
323
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
324
            choice_labels,
Lysandre's avatar
Style  
Lysandre committed
325
            input_mask,
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
        return config, inputs_dict


@require_torch
class FlaubertModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            FlaubertModel,
            FlaubertWithLMHeadModel,
            FlaubertForQuestionAnswering,
            FlaubertForQuestionAnsweringSimple,
            FlaubertForSequenceClassification,
341
            FlaubertForTokenClassification,
342
            FlaubertForMultipleChoice,
343
344
345
346
        )
        if is_torch_available()
        else ()
    )
Lysandre's avatar
Lysandre committed
347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    # Flaubert has 2 QA models -> need to manually set the correct labels for one of them here
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "FlaubertForQuestionAnswering":
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

Lysandre's avatar
Lysandre committed
363
    def setUp(self):
364
        self.model_tester = FlaubertModelTester(self)
Lysandre's avatar
Lysandre committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_flaubert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_model(*config_and_inputs)

    def test_flaubert_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_lm_head(*config_and_inputs)

    def test_flaubert_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_simple_qa(*config_and_inputs)

    def test_flaubert_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_qa(*config_and_inputs)

    def test_flaubert_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_sequence_classif(*config_and_inputs)

390
391
392
393
    def test_flaubert_token_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_token_classif(*config_and_inputs)

394
395
396
397
    def test_flaubert_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_multiple_choice(*config_and_inputs)

Lysandre's avatar
Lysandre committed
398
399
    @slow
    def test_model_from_pretrained(self):
400
        for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
401
            model = FlaubertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
402
            self.assertIsNotNone(model)