test_modeling_bert.py 18.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_generation_utils import GenerationTesterMixin
24
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
thomwolf's avatar
thomwolf committed
25

Aymeric Augustin's avatar
Aymeric Augustin committed
26

27
if is_torch_available():
28
29
    import torch

30
    from transformers import (
31
        MODEL_FOR_PRETRAINING_MAPPING,
32
33
        BertConfig,
        BertForMaskedLM,
34
        BertForMultipleChoice,
35
36
37
38
39
        BertForNextSentencePrediction,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
        BertForTokenClassification,
40
41
        BertLMHeadModel,
        BertModel,
42
    )
43
    from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
44

thomwolf's avatar
thomwolf committed
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class BertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
100
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = BertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
127
            return_dict=True,
128
        )
thomwolf's avatar
thomwolf committed
129

130
131
132
        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def prepare_config_and_inputs_for_decoder(self):
133
        (
134
135
136
137
138
139
140
141
142
143
144
145
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
146

147
        return (
148
149
150
151
152
153
154
155
156
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
157
158
        )

159
    def create_and_check_model(
160
161
162
163
164
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
165
166
167
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
168
169
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
170

171
    def create_and_check_model_as_decoder(
172
173
174
175
176
177
178
179
180
181
182
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
183
        config.add_cross_attention = True
184
185
186
        model = BertModel(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
187
        result = model(
188
189
190
191
192
193
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
194
        result = model(
195
196
197
198
199
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
200
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
Stas Bekman's avatar
Stas Bekman committed
201
202
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
203

204
    def create_and_check_for_causal_lm(
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = BertLMHeadModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
219
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
220
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
221

222
    def create_and_check_for_masked_lm(
223
224
225
226
227
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
228
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
229
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
230

231
    def create_and_check_model_for_causal_lm_as_decoder(
232
233
234
235
236
237
238
239
240
241
242
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
243
        config.add_cross_attention = True
244
        model = BertLMHeadModel(config=config)
245
246
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
247
        result = model(
248
249
250
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
251
            labels=token_labels,
252
253
254
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
255
        result = model(
256
257
258
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
259
            labels=token_labels,
260
261
            encoder_hidden_states=encoder_hidden_states,
        )
Stas Bekman's avatar
Stas Bekman committed
262
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
263

264
    def create_and_check_for_next_sequence_prediction(
265
266
267
268
269
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForNextSentencePrediction(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
270
        result = model(
Lysandre's avatar
Lysandre committed
271
272
273
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
274
            labels=sequence_labels,
275
        )
Stas Bekman's avatar
Stas Bekman committed
276
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
277

278
    def create_and_check_for_pretraining(
279
280
281
282
283
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
284
        result = model(
285
286
287
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
288
            labels=token_labels,
289
290
            next_sentence_label=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
291
292
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
293

294
    def create_and_check_for_question_answering(
295
296
297
298
299
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
300
        result = model(
301
302
303
304
305
306
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
307
308
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
309

310
    def create_and_check_for_sequence_classification(
311
312
313
314
315
316
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
317
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
318
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
319

320
    def create_and_check_for_token_classification(
321
322
323
324
325
326
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
327
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
328
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
329

330
    def create_and_check_for_multiple_choice(
331
332
333
334
335
336
337
338
339
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = BertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
340
        result = model(
341
342
343
344
345
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
346
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
347
348
349
350

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
351
352
353
354
355
356
357
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
358
359
360
361
362
363
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
364
class BertModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
365
366
367
368

    all_model_classes = (
        (
            BertModel,
369
            BertLMHeadModel,
370
            BertForMaskedLM,
371
            BertForMultipleChoice,
372
373
374
375
376
377
378
379
380
            BertForNextSentencePrediction,
            BertForPreTraining,
            BertForQuestionAnswering,
            BertForSequenceClassification,
            BertForTokenClassification,
        )
        if is_torch_available()
        else ()
    )
381
    all_generative_model_classes = (BertLMHeadModel,) if is_torch_available() else ()
thomwolf's avatar
thomwolf committed
382

383
384
385
386
387
388
389
390
391
392
393
394
395
396
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class in MODEL_FOR_PRETRAINING_MAPPING.values():
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
                inputs_dict["next_sentence_label"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

thomwolf's avatar
thomwolf committed
397
    def setUp(self):
398
        self.model_tester = BertModelTester(self)
thomwolf's avatar
thomwolf committed
399
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)
thomwolf's avatar
thomwolf committed
400
401

    def test_config(self):
thomwolf's avatar
thomwolf committed
402
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
403

404
    def test_model(self):
thomwolf's avatar
thomwolf committed
405
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
406
        self.model_tester.create_and_check_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
407

408
    def test_model_as_decoder(self):
409
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
410
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
411

412
    def test_model_as_decoder_with_default_input_mask(self):
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

428
        self.model_tester.create_and_check_model_as_decoder(
429
430
431
432
433
434
435
436
437
438
439
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

440
441
    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
442
        self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
443

thomwolf's avatar
thomwolf committed
444
445
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
446
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
thomwolf's avatar
thomwolf committed
447

448
    def test_for_causal_lm_decoder(self):
449
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
450
        self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs)
451

thomwolf's avatar
thomwolf committed
452
453
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
454
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
thomwolf's avatar
thomwolf committed
455

thomwolf's avatar
thomwolf committed
456
457
    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
458
        self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs)
thomwolf's avatar
thomwolf committed
459

thomwolf's avatar
thomwolf committed
460
461
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
462
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
thomwolf's avatar
thomwolf committed
463

thomwolf's avatar
thomwolf committed
464
465
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
466
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
thomwolf's avatar
thomwolf committed
467

thomwolf's avatar
thomwolf committed
468
469
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
470
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
471

thomwolf's avatar
thomwolf committed
472
473
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
474
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
475

476
    @slow
thomwolf's avatar
thomwolf committed
477
    def test_model_from_pretrained(self):
478
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
479
            model = BertModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
480
            self.assertIsNotNone(model)