test_modeling_bert.py 20 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
23
from .utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
24

Aymeric Augustin's avatar
Aymeric Augustin committed
25

26
if is_torch_available():
27
28
29
30
31
32
33
34
35
36
37
    from transformers import (
        BertConfig,
        BertModel,
        BertForMaskedLM,
        BertForNextSentencePrediction,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
        BertForTokenClassification,
        BertForMultipleChoice,
    )
38
    from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
39

thomwolf's avatar
thomwolf committed
40

41
@require_torch
42
class BertModelTest(ModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
43

44
45
46
47
48
49
50
51
52
53
54
55
56
    all_model_classes = (
        (
            BertModel,
            BertForMaskedLM,
            BertForNextSentencePrediction,
            BertForPreTraining,
            BertForQuestionAnswering,
            BertForSequenceClassification,
            BertForTokenClassification,
        )
        if is_torch_available()
        else ()
    )
thomwolf's avatar
thomwolf committed
57

thomwolf's avatar
thomwolf committed
58
    class BertModelTester(object):
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
108
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
109
110
111

            input_mask = None
            if self.use_input_mask:
112
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
113
114
115

            token_type_ids = None
            if self.use_token_type_ids:
116
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
thomwolf's avatar
thomwolf committed
117
118
119
120
121

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
122
123
124
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)
thomwolf's avatar
thomwolf committed
125
126

            config = BertConfig(
thomwolf's avatar
thomwolf committed
127
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
128
129
130
131
132
133
134
135
136
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
137
                is_decoder=False,
138
139
                initializer_range=self.initializer_range,
            )
thomwolf's avatar
thomwolf committed
140
141
142

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

143
        def prepare_config_and_inputs_for_decoder(self):
144
145
146
147
148
149
150
151
152
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = self.prepare_config_and_inputs()
153
154
155
156
157

            config.is_decoder = True
            encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
            encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

158
159
160
161
162
163
164
165
166
167
168
            return (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
                encoder_hidden_states,
                encoder_attention_mask,
            )
169

thomwolf's avatar
thomwolf committed
170
        def check_loss_output(self, result):
171
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
172

173
174
175
        def create_and_check_bert_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
176
            model = BertModel(config=config)
177
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
178
            model.eval()
179
180
            sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
            sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
thomwolf's avatar
thomwolf committed
181
            sequence_output, pooled_output = model(input_ids)
thomwolf's avatar
thomwolf committed
182
183
184
185
186
187

            result = {
                "sequence_output": sequence_output,
                "pooled_output": pooled_output,
            }
            self.parent.assertListEqual(
188
189
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
190
191
            self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])

192
193
194
195
196
197
198
199
200
201
202
203
        def create_and_check_bert_model_as_decoder(
            self,
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ):
204
            model = BertModel(config)
205
            model.to(torch_device)
206
            model.eval()
207
208
209
210
211
212
213
214
215
216
217
218
219
            sequence_output, pooled_output = model(
                input_ids,
                attention_mask=input_mask,
                token_type_ids=token_type_ids,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
            )
            sequence_output, pooled_output = model(
                input_ids,
                attention_mask=input_mask,
                token_type_ids=token_type_ids,
                encoder_hidden_states=encoder_hidden_states,
            )
220
221
222
223
224
225
226
            sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)

            result = {
                "sequence_output": sequence_output,
                "pooled_output": pooled_output,
            }
            self.parent.assertListEqual(
227
228
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
229
230
            self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])

231
232
233
        def create_and_check_bert_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
234
            model = BertForMaskedLM(config=config)
235
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
236
            model.eval()
237
238
239
            loss, prediction_scores = model(
                input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels
            )
thomwolf's avatar
thomwolf committed
240
241
242
243
244
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            self.parent.assertListEqual(
245
246
                list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
247
248
            self.check_loss_output(result)

249
250
251
252
253
254
255
256
257
258
259
260
        def create_and_check_bert_model_for_masked_lm_as_decoder(
            self,
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ):
261
            model = BertForMaskedLM(config=config)
262
            model.to(torch_device)
263
            model.eval()
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
            loss, prediction_scores = model(
                input_ids,
                attention_mask=input_mask,
                token_type_ids=token_type_ids,
                masked_lm_labels=token_labels,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
            )
            loss, prediction_scores = model(
                input_ids,
                attention_mask=input_mask,
                token_type_ids=token_type_ids,
                masked_lm_labels=token_labels,
                encoder_hidden_states=encoder_hidden_states,
            )
279
280
281
282
283
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            self.parent.assertListEqual(
284
285
                list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
286
287
            self.check_loss_output(result)

288
289
290
        def create_and_check_bert_for_next_sequence_prediction(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
291
            model = BertForNextSentencePrediction(config=config)
292
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
293
            model.eval()
294
295
296
297
298
299
            loss, seq_relationship_score = model(
                input_ids,
                attention_mask=input_mask,
                token_type_ids=token_type_ids,
                next_sentence_label=sequence_labels,
            )
thomwolf's avatar
thomwolf committed
300
301
302
303
            result = {
                "loss": loss,
                "seq_relationship_score": seq_relationship_score,
            }
304
            self.parent.assertListEqual(list(result["seq_relationship_score"].size()), [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
305
306
            self.check_loss_output(result)

307
308
309
        def create_and_check_bert_for_pretraining(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
310
            model = BertForPreTraining(config=config)
311
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
312
            model.eval()
313
314
315
316
317
318
319
            loss, prediction_scores, seq_relationship_score = model(
                input_ids,
                attention_mask=input_mask,
                token_type_ids=token_type_ids,
                masked_lm_labels=token_labels,
                next_sentence_label=sequence_labels,
            )
thomwolf's avatar
thomwolf committed
320
321
322
323
324
325
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
                "seq_relationship_score": seq_relationship_score,
            }
            self.parent.assertListEqual(
326
327
328
                list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
            self.parent.assertListEqual(list(result["seq_relationship_score"].size()), [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
329
330
            self.check_loss_output(result)

331
332
333
        def create_and_check_bert_for_question_answering(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
334
            model = BertForQuestionAnswering(config=config)
335
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
336
            model.eval()
337
338
339
340
341
342
343
            loss, start_logits, end_logits = model(
                input_ids,
                attention_mask=input_mask,
                token_type_ids=token_type_ids,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
            )
thomwolf's avatar
thomwolf committed
344
345
346
347
348
            result = {
                "loss": loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
349
350
            self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
351
352
            self.check_loss_output(result)

353
354
355
        def create_and_check_bert_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
356
357
            config.num_labels = self.num_labels
            model = BertForSequenceClassification(config)
358
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
359
            model.eval()
360
361
362
            loss, logits = model(
                input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
            )
thomwolf's avatar
thomwolf committed
363
364
365
366
            result = {
                "loss": loss,
                "logits": logits,
            }
367
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
thomwolf's avatar
thomwolf committed
368
369
            self.check_loss_output(result)

370
371
372
        def create_and_check_bert_for_token_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
373
374
            config.num_labels = self.num_labels
            model = BertForTokenClassification(config=config)
375
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
376
            model.eval()
377
378
379
            loss, logits = model(
                input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
            )
thomwolf's avatar
thomwolf committed
380
381
382
383
384
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(
385
386
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
            )
thomwolf's avatar
thomwolf committed
387
388
            self.check_loss_output(result)

389
390
391
        def create_and_check_bert_for_multiple_choice(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
392
393
            config.num_choices = self.num_choices
            model = BertForMultipleChoice(config=config)
394
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
395
396
397
398
            model.eval()
            multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
399
400
401
402
403
404
            loss, logits = model(
                multiple_choice_inputs_ids,
                attention_mask=multiple_choice_input_mask,
                token_type_ids=multiple_choice_token_type_ids,
                labels=choice_labels,
            )
thomwolf's avatar
thomwolf committed
405
406
407
408
            result = {
                "loss": loss,
                "logits": logits,
            }
409
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
thomwolf's avatar
thomwolf committed
410
411
            self.check_loss_output(result)

thomwolf's avatar
thomwolf committed
412
413
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
414
415
416
417
418
419
420
421
422
423
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
424
            return config, inputs_dict
thomwolf's avatar
thomwolf committed
425

thomwolf's avatar
thomwolf committed
426
427
428
    def setUp(self):
        self.model_tester = BertModelTest.BertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)
thomwolf's avatar
thomwolf committed
429
430

    def test_config(self):
thomwolf's avatar
thomwolf committed
431
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
432

433
    def test_bert_model(self):
thomwolf's avatar
thomwolf committed
434
435
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
436

437
438
439
440
    def test_bert_model_as_decoder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_bert_model_as_decoder(*config_and_inputs)

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    def test_bert_model_as_decoder_with_default_input_mask(self):
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

        self.model_tester.create_and_check_bert_model_as_decoder(
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

thomwolf's avatar
thomwolf committed
469
470
471
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)
thomwolf's avatar
thomwolf committed
472

473
474
475
476
    def test_for_masked_lm_decoder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_bert_model_for_masked_lm_as_decoder(*config_and_inputs)

thomwolf's avatar
thomwolf committed
477
478
479
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)
thomwolf's avatar
thomwolf committed
480

thomwolf's avatar
thomwolf committed
481
482
483
    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)
thomwolf's avatar
thomwolf committed
484

thomwolf's avatar
thomwolf committed
485
486
487
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)
thomwolf's avatar
thomwolf committed
488

thomwolf's avatar
thomwolf committed
489
490
491
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)
thomwolf's avatar
thomwolf committed
492

thomwolf's avatar
thomwolf committed
493
494
495
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
496

thomwolf's avatar
thomwolf committed
497
498
499
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
500

501
    @slow
thomwolf's avatar
thomwolf committed
502
503
    def test_model_from_pretrained(self):
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
504
            model = BertModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
505
            self.assertIsNotNone(model)