test_pipelines.py 14.7 KB
Newer Older
1
import unittest
Julien Chaumond's avatar
Julien Chaumond committed
2
from typing import Iterable, List, Optional
Morgan Funtowicz's avatar
Morgan Funtowicz committed
3
4

from transformers import pipeline
Lysandre Debut's avatar
Lysandre Debut committed
5
6
7
8
9
10
11
12
from transformers.pipelines import (
    FeatureExtractionPipeline,
    FillMaskPipeline,
    NerPipeline,
    Pipeline,
    QuestionAnsweringPipeline,
    TextClassificationPipeline,
)
13

Lysandre Debut's avatar
Lysandre Debut committed
14
from .utils import require_tf, require_torch, slow
15

Aymeric Augustin's avatar
Aymeric Augustin committed
16

17
18
19
20
21
QA_FINETUNED_MODELS = [
    (("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
    (("bert-base-cased", {"use_fast": False}), "bert-large-cased-whole-word-masking-finetuned-squad", None),
    (("bert-base-cased", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
22

23
24
25
26
27
TF_QA_FINETUNED_MODELS = [
    (("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
    (("bert-base-cased", {"use_fast": False}), "bert-large-cased-whole-word-masking-finetuned-squad", None),
    (("bert-base-cased", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
]
28
29
30

TF_NER_FINETUNED_MODELS = {
    (
31
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
32
33
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
34
35
36
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
37
38
NER_FINETUNED_MODELS = {
    (
39
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
40
41
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
42
43
44
45
    )
}

FEATURE_EXTRACT_FINETUNED_MODELS = {
46
47
    ("bert-base-cased", "bert-base-cased", None),
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
48
    ("distilbert-base-cased", "distilbert-base-cased", None),
Morgan Funtowicz's avatar
Morgan Funtowicz committed
49
}
50

51
TF_FEATURE_EXTRACT_FINETUNED_MODELS = {
52
53
    ("bert-base-cased", "bert-base-cased", None),
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
54
    ("distilbert-base-cased", "distilbert-base-cased", None),
55
56
57
58
}

TF_TEXT_CLASSIF_FINETUNED_MODELS = {
    (
59
        "bert-base-uncased",
60
61
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
62
63
64
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
65
66
TEXT_CLASSIF_FINETUNED_MODELS = {
    (
67
        "bert-base-uncased",
68
69
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
70
    )
71
72
}

73
74
75
FILL_MASK_FINETUNED_MODELS = [
    (("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
Julien Chaumond's avatar
Julien Chaumond committed
76

77
78
79
TF_FILL_MASK_FINETUNED_MODELS = [
    (("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
Julien Chaumond's avatar
Julien Chaumond committed
80

81
82
83
SUMMARIZATION_FINETUNED_MODELS = {("bart-large-cnn", "bart-large-cnn"), ("t5-small", "t5-small")}
TF_SUMMARIZATION_FINETUNED_MODELS = {("t5-small", "t5-small")}

84

Morgan Funtowicz's avatar
Morgan Funtowicz committed
85
class MonoColumnInputTestCase(unittest.TestCase):
Julien Chaumond's avatar
Julien Chaumond committed
86
87
88
89
90
91
92
93
94
    def _test_mono_column_pipeline(
        self,
        nlp: Pipeline,
        valid_inputs: List,
        invalid_inputs: List,
        output_keys: Iterable[str],
        expected_multi_result: Optional[List] = None,
        expected_check_keys: Optional[List[str]] = None,
    ):
Morgan Funtowicz's avatar
Morgan Funtowicz committed
95
96
97
98
99
100
101
102
103
104
105
106
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

107
        multi_result = [nlp(input) for input in valid_inputs]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
108
109
110
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

Julien Chaumond's avatar
Julien Chaumond committed
111
112
113
114
115
116
117
        if expected_multi_result is not None:
            for result, expect in zip(multi_result, expected_multi_result):
                for key in expected_check_keys or []:
                    self.assertEqual(
                        set([o[key] for o in result]), set([o[key] for o in expect]),
                    )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
118
119
120
121
122
123
124
125
126
        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs)

127
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
128
    def test_ner(self):
129
130
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
131
132
        invalid_inputs = [None]
        for tokenizer, model, config in NER_FINETUNED_MODELS:
133
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer)
134
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
135

136
137
    @require_tf
    def test_tf_ner(self):
138
139
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
140
        invalid_inputs = [None]
141
        for tokenizer, model, config in TF_NER_FINETUNED_MODELS:
142
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer, framework="tf")
143
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
144

145
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
146
    def test_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
147
        mandatory_keys = {"label", "score"}
148
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
149
150
        invalid_inputs = [None]
        for tokenizer, model, config in TEXT_CLASSIF_FINETUNED_MODELS:
151
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
152
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
153

154
155
    @require_tf
    def test_tf_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
156
        mandatory_keys = {"label", "score"}
157
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
158
        invalid_inputs = [None]
159
        for tokenizer, model, config in TF_TEXT_CLASSIF_FINETUNED_MODELS:
160
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer, framework="tf")
161
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
162

163
    @require_torch
Julien Chaumond's avatar
Julien Chaumond committed
164
    def test_feature_extraction(self):
165
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
166
167
        invalid_inputs = [None]
        for tokenizer, model, config in FEATURE_EXTRACT_FINETUNED_MODELS:
Julien Chaumond's avatar
Julien Chaumond committed
168
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer)
169
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
170

171
    @require_tf
Julien Chaumond's avatar
Julien Chaumond committed
172
    def test_tf_feature_extraction(self):
173
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
174
        invalid_inputs = [None]
175
        for tokenizer, model, config in TF_FEATURE_EXTRACT_FINETUNED_MODELS:
176
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer, framework="tf")
177
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
178

Julien Chaumond's avatar
Julien Chaumond committed
179
180
181
182
183
184
185
186
187
188
    @require_torch
    def test_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
189
190
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
191
192
193
            ],
            [
                {
194
195
196
197
198
199
200
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in FILL_MASK_FINETUNED_MODELS:
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, topk=2)
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

    @require_tf
    def test_tf_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
226
227
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
228
229
230
            ],
            [
                {
231
232
233
234
235
236
237
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
238
239
240
241
242
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in TF_FILL_MASK_FINETUNED_MODELS:
243
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, framework="tf", topk=2)
Julien Chaumond's avatar
Julien Chaumond committed
244
245
246
247
248
249
250
251
252
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

253
254
255
256
257
    @require_torch
    def test_summarization(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["summary_text"]
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        for model, tokenizer in SUMMARIZATION_FINETUNED_MODELS:
            nlp = pipeline(task="summarization", model=model, tokenizer=tokenizer)
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )

    @require_tf
    def test_tf_summarization(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["summary_text"]
        for model, tokenizer in TF_SUMMARIZATION_FINETUNED_MODELS:
            nlp = pipeline(task="summarization", model=model, tokenizer=tokenizer, framework="tf")
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )
274

Morgan Funtowicz's avatar
Morgan Funtowicz committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

class MultiColumnInputTestCase(unittest.TestCase):
    def _test_multicolumn_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]):
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, dict)

        for key in output_keys:
            self.assertIn(key, mono_result)

        multi_result = nlp(valid_inputs)
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], dict)

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs[0])
        self.assertRaises(Exception, nlp, invalid_inputs)

297
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
298
    def test_question_answering(self):
299
        mandatory_output_keys = {"score", "answer", "start", "end"}
Morgan Funtowicz's avatar
Morgan Funtowicz committed
300
        valid_samples = [
301
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
302
            {
303
304
305
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
Morgan Funtowicz's avatar
Morgan Funtowicz committed
306
307
        ]
        invalid_samples = [
308
309
310
311
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
312
313
314
        ]

        for tokenizer, model, config in QA_FINETUNED_MODELS:
315
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer)
316
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
317

318
    @require_tf
Lysandre's avatar
Lysandre committed
319
    @slow
320
    def test_tf_question_answering(self):
321
        mandatory_output_keys = {"score", "answer", "start", "end"}
322
        valid_samples = [
323
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
324
            {
325
326
327
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
328
329
        ]
        invalid_samples = [
330
331
332
333
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
334
        ]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
335

336
        for tokenizer, model, config in TF_QA_FINETUNED_MODELS:
337
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer, framework="tf")
338
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
Lysandre Debut's avatar
Lysandre Debut committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365


class PipelineCommonTests(unittest.TestCase):

    pipelines = (
        NerPipeline,
        FeatureExtractionPipeline,
        QuestionAnsweringPipeline,
        FillMaskPipeline,
        TextClassificationPipeline,
    )

    @slow
    @require_tf
    def test_tf_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
        for default_pipeline in self.pipelines:
            with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(default_pipeline.task)):
                default_pipeline(framework="tf")

    @slow
    @require_torch
    def test_pt_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
        for default_pipeline in self.pipelines:
            with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(default_pipeline.task)):
                default_pipeline(framework="pt")