test_data_collator.py 10.5 KB
Newer Older
1
2
3
import os
import shutil
import tempfile
Sylvain Gugger's avatar
Sylvain Gugger committed
4
5
import unittest

6
7
from transformers import BertTokenizer, is_torch_available, set_seed
from transformers.testing_utils import require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
8
9
10
11
12
13
14
15


if is_torch_available():
    import torch

    from transformers import (
        DataCollatorForLanguageModeling,
        DataCollatorForPermutationLanguageModeling,
16
17
        DataCollatorForTokenClassification,
        DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
20
21
22
23
        default_data_collator,
    )


@require_torch
class DataCollatorIntegrationTest(unittest.TestCase):
24
25
26
27
28
29
30
31
32
33
34
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
        self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt")
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

Sylvain Gugger's avatar
Sylvain Gugger committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    def test_default_with_dict(self):
        features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor([[0, 1, 2]] * 8)))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # Features can already be tensors
        features = [{"label": i, "inputs": torch.randint(10, [10])} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

        # Labels can already be tensors
        features = [{"label": torch.tensor(i), "inputs": torch.randint(10, [10])} for i in range(8)]
        batch = default_data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

64
65
66
67
68
69
70
71
72
73
74
    def test_default_classification_and_regression(self):
        data_collator = default_data_collator

        features = [{"input_ids": [0, 1, 2, 3, 4], "label": i} for i in range(4)]
        batch = data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.long)

        features = [{"input_ids": [0, 1, 2, 3, 4], "label": float(i)} for i in range(4)]
        batch = data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.float)

Sylvain Gugger's avatar
Sylvain Gugger committed
75
76
77
78
79
80
81
82
83
84
85
86
    def test_default_with_no_labels(self):
        features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    def test_data_collator_with_padding(self):
        tokenizer = BertTokenizer(self.vocab_file)
        features = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}]

        data_collator = DataCollatorWithPadding(tokenizer)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)

        data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10]))

        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8]))

    def test_data_collator_for_token_classification(self):
        tokenizer = BertTokenizer(self.vocab_file)
        features = [
            {"input_ids": [0, 1, 2], "labels": [0, 1, 2]},
            {"input_ids": [0, 1, 2, 3, 4, 5], "labels": [0, 1, 2, 3, 4, 5]},
        ]

        data_collator = DataCollatorForTokenClassification(tokenizer)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
        self.assertEqual(batch["labels"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-100] * 3)

        data_collator = DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10]))
        self.assertEqual(batch["labels"].shape, torch.Size([2, 10]))

        data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8]))
        self.assertEqual(batch["labels"].shape, torch.Size([2, 8]))

        data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
        self.assertEqual(batch["labels"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3)

    def test_data_collator_for_language_modeling(self):
        tokenizer = BertTokenizer(self.vocab_file)
        no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}]
        pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}]
Sylvain Gugger's avatar
Sylvain Gugger committed
139
140

        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
141
142
143
        batch = data_collator(no_pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
144

145
146
147
        batch = data_collator(pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
148

149
150
151
152
153
        tokenizer._pad_token = None
        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
        with self.assertRaises(ValueError):
            # Expect error due to padding token missing
            data_collator(pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
154

155
156
        set_seed(42)  # For reproducibility
        tokenizer = BertTokenizer(self.vocab_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
157
        data_collator = DataCollatorForLanguageModeling(tokenizer)
158
159
160
        batch = data_collator(no_pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
161

162
163
164
        masked_tokens = batch["input_ids"] == tokenizer.mask_token_id
        self.assertTrue(torch.any(masked_tokens))
        self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist()))
Sylvain Gugger's avatar
Sylvain Gugger committed
165

166
167
168
169
170
171
172
        batch = data_collator(pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))

        masked_tokens = batch["input_ids"] == tokenizer.mask_token_id
        self.assertTrue(torch.any(masked_tokens))
        self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist()))
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174

    def test_plm(self):
175
176
177
178
        tokenizer = BertTokenizer(self.vocab_file)
        no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}]
        pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}]

Sylvain Gugger's avatar
Sylvain Gugger committed
179
180
        data_collator = DataCollatorForPermutationLanguageModeling(tokenizer)

181
        batch = data_collator(pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
182
        self.assertIsInstance(batch, dict)
183
184
185
186
187
188
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))

        batch = data_collator(no_pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
189
        self.assertIsInstance(batch, dict)
190
191
192
193
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
194
195
196
197
198

        example = [torch.randint(5, [5])]
        with self.assertRaises(ValueError):
            # Expect error due to odd sequence length
            data_collator(example)
199
200

    def test_nsp(self):
201
        tokenizer = BertTokenizer(self.vocab_file)
202
203
204
205
206
        features = [
            {"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i}
            for i in range(2)
        ]
        data_collator = DataCollatorForLanguageModeling(tokenizer)
207
        batch = data_collator(features)
208

209
210
211
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 5)))
212
        self.assertEqual(batch["next_sentence_label"].shape, torch.Size((2,)))
213
214

    def test_sop(self):
215
216
217
218
219
        tokenizer = BertTokenizer(self.vocab_file)
        features = [
            {
                "input_ids": torch.tensor([0, 1, 2, 3, 4]),
                "token_type_ids": torch.tensor([0, 1, 2, 3, 4]),
220
                "sentence_order_label": i,
221
222
223
            }
            for i in range(2)
        ]
224
        data_collator = DataCollatorForLanguageModeling(tokenizer)
225
        batch = data_collator(features)
226

227
228
229
230
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["sentence_order_label"].shape, torch.Size((2,)))