test_data_collator.py 10.6 KB
Newer Older
1
2
3
import os
import shutil
import tempfile
Sylvain Gugger's avatar
Sylvain Gugger committed
4
5
import unittest

6
7
from transformers import BertTokenizer, is_torch_available, set_seed
from transformers.testing_utils import require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
8
9
10
11
12
13
14


if is_torch_available():
    import torch

    from transformers import (
        DataCollatorForLanguageModeling,
15
        DataCollatorForNextSentencePrediction,
Sylvain Gugger's avatar
Sylvain Gugger committed
16
        DataCollatorForPermutationLanguageModeling,
17
        DataCollatorForSOP,
18
19
        DataCollatorForTokenClassification,
        DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
20
21
22
23
24
25
        default_data_collator,
    )


@require_torch
class DataCollatorIntegrationTest(unittest.TestCase):
26
27
28
29
30
31
32
33
34
35
36
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
        self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt")
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

Sylvain Gugger's avatar
Sylvain Gugger committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    def test_default_with_dict(self):
        features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor([[0, 1, 2]] * 8)))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # Features can already be tensors
        features = [{"label": i, "inputs": torch.randint(10, [10])} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

        # Labels can already be tensors
        features = [{"label": torch.tensor(i), "inputs": torch.randint(10, [10])} for i in range(8)]
        batch = default_data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

66
67
68
69
70
71
72
73
74
75
76
    def test_default_classification_and_regression(self):
        data_collator = default_data_collator

        features = [{"input_ids": [0, 1, 2, 3, 4], "label": i} for i in range(4)]
        batch = data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.long)

        features = [{"input_ids": [0, 1, 2, 3, 4], "label": float(i)} for i in range(4)]
        batch = data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.float)

Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
79
80
81
82
83
84
85
86
87
88
    def test_default_with_no_labels(self):
        features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    def test_data_collator_with_padding(self):
        tokenizer = BertTokenizer(self.vocab_file)
        features = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}]

        data_collator = DataCollatorWithPadding(tokenizer)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)

        data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10]))

        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8]))

    def test_data_collator_for_token_classification(self):
        tokenizer = BertTokenizer(self.vocab_file)
        features = [
            {"input_ids": [0, 1, 2], "labels": [0, 1, 2]},
            {"input_ids": [0, 1, 2, 3, 4, 5], "labels": [0, 1, 2, 3, 4, 5]},
        ]

        data_collator = DataCollatorForTokenClassification(tokenizer)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
        self.assertEqual(batch["labels"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-100] * 3)

        data_collator = DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10]))
        self.assertEqual(batch["labels"].shape, torch.Size([2, 10]))

        data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8]))
        self.assertEqual(batch["labels"].shape, torch.Size([2, 8]))

        data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
        self.assertEqual(batch["labels"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3)

    def test_data_collator_for_language_modeling(self):
        tokenizer = BertTokenizer(self.vocab_file)
        no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}]
        pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}]
Sylvain Gugger's avatar
Sylvain Gugger committed
141
142

        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
143
144
145
        batch = data_collator(no_pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
146

147
148
149
        batch = data_collator(pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
150

151
152
153
154
155
        tokenizer._pad_token = None
        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
        with self.assertRaises(ValueError):
            # Expect error due to padding token missing
            data_collator(pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
156

157
158
        set_seed(42)  # For reproducibility
        tokenizer = BertTokenizer(self.vocab_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
159
        data_collator = DataCollatorForLanguageModeling(tokenizer)
160
161
162
        batch = data_collator(no_pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
163

164
165
166
        masked_tokens = batch["input_ids"] == tokenizer.mask_token_id
        self.assertTrue(torch.any(masked_tokens))
        self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist()))
Sylvain Gugger's avatar
Sylvain Gugger committed
167

168
169
170
171
172
173
174
        batch = data_collator(pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))

        masked_tokens = batch["input_ids"] == tokenizer.mask_token_id
        self.assertTrue(torch.any(masked_tokens))
        self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist()))
Sylvain Gugger's avatar
Sylvain Gugger committed
175
176

    def test_plm(self):
177
178
179
180
        tokenizer = BertTokenizer(self.vocab_file)
        no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}]
        pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}]

Sylvain Gugger's avatar
Sylvain Gugger committed
181
182
        data_collator = DataCollatorForPermutationLanguageModeling(tokenizer)

183
        batch = data_collator(pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
184
        self.assertIsInstance(batch, dict)
185
186
187
188
189
190
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))

        batch = data_collator(no_pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
191
        self.assertIsInstance(batch, dict)
192
193
194
195
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
196
197
198
199
200

        example = [torch.randint(5, [5])]
        with self.assertRaises(ValueError):
            # Expect error due to odd sequence length
            data_collator(example)
201
202

    def test_nsp(self):
203
204
        tokenizer = BertTokenizer(self.vocab_file)
        features = [{"tokens_a": [0, 1, 2, 3, 4], "tokens_b": [0, 1, 2, 3, 4], "is_random_next": i} for i in range(2)]
205
        data_collator = DataCollatorForNextSentencePrediction(tokenizer)
206
        batch = data_collator(features)
207

208
209
210
211
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 512)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))
        self.assertEqual(batch["next_sentence_label"].shape, torch.Size((2,)))
212
213

    def test_sop(self):
214
215
216
217
218
219
220
221
222
        tokenizer = BertTokenizer(self.vocab_file)
        features = [
            {
                "input_ids": torch.tensor([0, 1, 2, 3, 4]),
                "token_type_ids": torch.tensor([0, 1, 2, 3, 4]),
                "sentence_order_label": torch.tensor(i),
            }
            for i in range(2)
        ]
223
        data_collator = DataCollatorForSOP(tokenizer)
224
        batch = data_collator(features)
225

226
227
228
229
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["sentence_order_label"].shape, torch.Size((2,)))