test_modeling_tf_common.py 35.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
thomwolf's avatar
thomwolf committed
20
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import tempfile
22
import unittest
23
from importlib import import_module
thomwolf's avatar
thomwolf committed
24

25
from transformers import is_tf_available, is_torch_available
26

Julien Chaumond's avatar
Julien Chaumond committed
27
from .utils import _tf_gpu_memory_limit, require_tf
28

Aymeric Augustin's avatar
Aymeric Augustin committed
29

30
if is_tf_available():
thomwolf's avatar
thomwolf committed
31
    import tensorflow as tf
thomwolf's avatar
thomwolf committed
32
    import numpy as np
33

34
35
36
37
38
    from transformers import (
        tf_top_k_top_p_filtering,
        TFAdaptiveEmbedding,
        TFSharedEmbeddings,
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
39
40
41
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
42
    )
43

Julien Chaumond's avatar
Julien Chaumond committed
44
45
46
47
48
49
50
51
52
53
54
55
56
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
                tf.config.experimental.set_virtual_device_configuration(
                    gpu, [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
                )
                logical_gpus = tf.config.experimental.list_logical_devices("GPU")
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
57

58

thomwolf's avatar
thomwolf committed
59
60
61
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
62
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
63
64
65
66
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


67
68
@require_tf
class TFModelTesterMixin:
69

70
71
    model_tester = None
    all_model_classes = ()
72
    all_generative_model_classes = ()
73
74
75
76
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    is_encoder_decoder = False
77

78
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
79
        if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
80
            inputs_dict = {
81
82
83
84
85
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices, 1))
                if isinstance(v, tf.Tensor) and v.ndim != 0
                else v
                for k, v in inputs_dict.items()
            }
86
87
88
89
90
91
92
93
94
95
96

        if return_labels:
            if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size)
            elif model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size)
            elif model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size)
            elif model_class in TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values():
                inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, self.model_tester.seq_length))
97
98
        return inputs_dict

99
100
101
    def test_initialization(self):
        pass
        # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
102

103
104
105
106
107
108
109
        # configs_no_init = _config_zero_init(config)
        # for model_class in self.all_model_classes:
        #     model = model_class(config=configs_no_init)
        #     for name, param in model.named_parameters():
        #         if param.requires_grad:
        #             self.assertIn(param.data.mean().item(), [0.0, 1.0],
        #             msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
110

111
112
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
113

114
115
        for model_class in self.all_model_classes:
            model = model_class(config)
116
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
117

118
            with tempfile.TemporaryDirectory() as tmpdirname:
119
120
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
121
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
122

123
                self.assert_outputs_same(after_outputs, outputs)
124

125
126
127
128
129
130
131
132
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
133
            if module_member_name.endswith("MainLayer")
134
            for module_member in (getattr(module, module_member_name),)
135
136
137
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
138
139
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
140
141
142
143
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
144
                config.use_cache = False
Julien Plu's avatar
Julien Plu committed
145
146
147
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
148
149
150
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
151

152
153
154
155
156
157
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
158
159
160
161
162
163
164
165
166
167
168
169
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
170
171
172
173
174
175
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
176
177
178
179
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
        else:
            out_1 = after_outputs[0].numpy()
180
        out_2 = outputs[0].numpy()
181
        self.assertEqual(out_1.shape, out_2.shape)
182
183
184
185
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
186

187
188
189
    def test_pt_tf_model_equivalence(self):
        if not is_torch_available():
            return
thomwolf's avatar
thomwolf committed
190

191
192
        import torch
        import transformers
thomwolf's avatar
thomwolf committed
193

194
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
195

196
197
198
        for model_class in self.all_model_classes:
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beggining
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
199

200
            config.output_hidden_states = True
201

202
203
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
204

205
            # Check we can load pt model in tf and vice-versa with model => model functions
206

207
208
209
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
            )
210
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
211

212
213
214
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
215
216
                (name, torch.from_numpy(key.numpy()).to(torch.long))
                for name, key in self._prepare_for_class(inputs_dict, model_class).items()
217
            )
218
219
220
221
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

222
223
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
224
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
225
226
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
227

228
229
230
231
232
233
234
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
235

236
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
237
238
239
240
241
242
243
            # Debug info (remove when fixed)
            if max_diff >= 2e-2:
                print("===")
                print(model_class)
                print(config)
                print(inputs_dict)
                print(pt_inputs_dict)
244
245
246
            self.assertLessEqual(max_diff, 2e-2)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
247
            with tempfile.TemporaryDirectory() as tmpdirname:
248
249
250
251
252
253
254
255
256
257
258
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
259
260
                (name, torch.from_numpy(key.numpy()).to(torch.long))
                for name, key in self._prepare_for_class(inputs_dict, model_class).items()
261
            )
262
263
264
265
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

266
267
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
268
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
269
270
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
271
272
273
274
275
276
277
278
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

279
280
281
282
283
284
285
286
287
288
289
            max_diff = np.amax(np.abs(tfo - pto))
            self.assertLessEqual(max_diff, 2e-2)

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
290
291
292
293
294
295
296
297
298
299
300
301
            if self.is_encoder_decoder:
                input_ids = {
                    "decoder_input_ids": tf.keras.Input(
                        batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"
                    ),
                    "inputs": tf.keras.Input(batch_shape=(2, 2000), name="inputs", dtype="int32"),
                }
            elif model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                input_ids = tf.keras.Input(batch_shape=(4, 2, 2000), name="input_ids", dtype="int32")
            else:
                input_ids = tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32")

302
303
304
305
            # Prepare our model
            model = model_class(config)

            # Let's load it from the disk to be sure we can use pretrained weights
306
            with tempfile.TemporaryDirectory() as tmpdirname:
307
                outputs = model(self._prepare_for_class(inputs_dict, model_class))  # build the model
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids)
            hidden_states = outputs_dict[0]

            # Add a dense layer on top to test intetgration with other keras modules
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
326
            outputs_dict = model(self._prepare_for_class(inputs_dict, model_class))
327

328
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
329
            input_ids = inputs_keywords.pop("input_ids" if not self.is_encoder_decoder else "inputs", None,)
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
            outputs_keywords = model(input_ids, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        decoder_seq_length = (
            self.model_tester.decoder_seq_length
            if hasattr(self.model_tester, "decoder_seq_length")
            else self.model_tester.seq_length
        )
        encoder_seq_length = (
            self.model_tester.encoder_seq_length
            if hasattr(self.model_tester, "encoder_seq_length")
            else self.model_tester.seq_length
        )
        decoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
        )
        encoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
        )

        for model_class in self.all_model_classes:
357
            inputs_dict["output_attentions"] = True
358
359
            config.output_hidden_states = False
            model = model_class(config)
360
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
361
362
363
364
365
366
            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
367
            )
368
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
369

370
371
372
            if self.is_encoder_decoder:
                self.assertEqual(out_len % 2, 0)
                decoder_attentions = outputs[(out_len // 2) - 1]
373
                self.assertEqual(model.config.output_hidden_states, False)
374
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
375
                self.assertListEqual(
376
377
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
378
                )
thomwolf's avatar
thomwolf committed
379

380
381
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
382
            config.output_attentions = True
383
            model = model_class(config)
384
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
385
386
387
388
389
390
391
392
393
394
            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
395
396
            config.output_hidden_states = True
            model = model_class(config)
397
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
398
399
400
401
402
403
404
405
406
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)

            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )
407

408
409
410
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
411
        def check_hidden_states_output(config, inputs_dict, model_class):
412
            model = model_class(config)
413
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
414
415
416
            hidden_states = [t.numpy() for t in outputs[-1]]
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
            self.assertListEqual(
417
                list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size],
418
            )
419

Joseph Liu's avatar
Joseph Liu committed
420
421
422
423
424
425
426
427
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

428
429
430
431
432
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
433
            assert isinstance(model.get_input_embeddings(), (tf.keras.layers.Layer, TFAdaptiveEmbedding))
434
435
436
437
438
439
440
441
            x = model.get_output_embeddings()
            assert x is None or isinstance(x, tf.keras.layers.Layer)

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
442
            first, second = (
443
444
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
445
            )
446
447
448
449
450
451
452
453
454
455
456
457
458
459
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

    def _get_embeds(self, wte, input_ids):
        # ^^ In our TF models, the input_embeddings can take slightly different forms,
        # so we try a few of them.
        # We used to fall back to just synthetically creating a dummy tensor of ones:
        try:
            x = wte(input_ids, mode="embedding")
        except Exception:
thomwolf's avatar
thomwolf committed
460
            try:
461
                x = wte([input_ids], mode="embedding")
462
            except Exception:
thomwolf's avatar
thomwolf committed
463
                try:
464
                    x = wte([input_ids, None, None, None], mode="embedding")
465
                except Exception:
466
                    if hasattr(self.model_tester, "embedding_size"):
467
                        x = tf.ones(input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32,)
468
                    else:
469
                        x = tf.ones(input_ids.shape + [self.model_tester.hidden_size], dtype=tf.dtypes.float32,)
470
471
472
473
474
475
476
477
        return x

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

478
479
480
481
482
483
484
485
486
487
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["inputs"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["inputs"]
                inputs.pop("decoder_input_ids", None)

488
            wte = model.get_input_embeddings()
thomwolf's avatar
thomwolf committed
489
            if not self.is_encoder_decoder:
490
                inputs["inputs_embeds"] = self._get_embeds(wte, input_ids)
thomwolf's avatar
thomwolf committed
491
            else:
492
493
                inputs["inputs_embeds"] = self._get_embeds(wte, encoder_input_ids)
                inputs["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids)
494

495
            model(inputs)
496

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INPUT_SHAPE = [1, 10, config.hidden_size]
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
                emb_old = model.get_input_embeddings()
                emb_old.build(INPUT_SHAPE)
                # reshape the embeddings
                new_embeddings = model._get_resized_embeddings(emb_old, size)
                # # check that the the resized embeddings size matches the desired size.
                assert_size = size if size is not None else config.vocab_size
                self.assertEqual(new_embeddings.shape[0], assert_size)
                # check that weights remain the same after resizing
                emd_old_weights = model._get_word_embeddings(emb_old)
                models_equal = True
                for p1, p2 in zip(emd_old_weights.numpy(), new_embeddings.numpy()):
                    if np.sum(abs(p1 - p2)) > 0:
                        models_equal = False
                self.assertTrue(models_equal)

521
    def test_lm_head_model_random_no_beam_search_generate(self):
522
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
523
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
524

525
        # iterate over all generative models
526
527
528
529
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
530
                # if bos token id is not defined mobel needs input_ids
531
                with self.assertRaises(AssertionError):
532
                    model.generate(do_sample=True, max_length=5)
533
                # num_return_sequences = 1
534
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
535
            else:
536
                # num_return_sequences = 1
537
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
538
539

            with self.assertRaises(AssertionError):
540
                # generating multiple sequences when no beam search generation
541
542
543
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

544
545
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
546
547

            # check bad words tokens language generation
548
549
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
550
            output_tokens = model.generate(
551
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
552
            )
553
            # only count generated tokens
554
555
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
556

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2, num_return_sequences=2,))
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
583
            output_tokens = model.generate(
584
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
585
            )
586
            # only count generated tokens
587
588
589
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                added_label = prepared_for_class[list(prepared_for_class.keys() - inputs_dict.keys())[0]]
                loss_size = tf.size(added_label)

                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_ids = prepared_for_class.pop("input_ids")
                loss = model(input_ids, **prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
                signature = inspect.getfullargspec(model.call)[0]

                # Create a dictionary holding the location of the tensors in the tuple
                tuple_index_mapping = {1: "input_ids"}
                for label_key in label_keys:
                    label_key_index = signature.index(label_key)
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())

                # Initialize a list with None, update the values and convert to a tuple
                list_input = [None] * sorted_tuple_index_mapping[-1][0]
                for index, value in sorted_tuple_index_mapping:
                    list_input[index - 1] = prepared_for_class[value]
                tuple_input = tuple(list_input)

                # Send to model
                loss = model(tuple_input)[0]
                self.assertEqual(loss.shape, [loss_size])

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

653
    def _check_generated_ids(self, output_ids):
654
655
656
657
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

658
659
660
661
662
663
664
665
666
667
668
669
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
670

thomwolf's avatar
thomwolf committed
671
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
672
673
674
675
676
677
678
679
680
681
682
683
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

684
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
685
686

    return output
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781


@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]], dtype=tf.int32,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))), dtype=tf.int32,
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)