"src/routes/vscode:/vscode.git/clone" did not exist on "09a81eb22576df8b0e72a880b6e2b15c0b39d9ae"
run_summarization.py 29.7 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2021 The HuggingFace Team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

27
import datasets
28
import nltk  # Here to have a nice missing dependency error message early on
29
30
31
32
import numpy as np
from datasets import load_dataset, load_metric

import transformers
33
from filelock import FileLock
34
35
36
37
38
39
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
40
41
42
43
    MBart50Tokenizer,
    MBart50TokenizerFast,
    MBartTokenizer,
    MBartTokenizerFast,
44
45
46
47
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    set_seed,
)
48
from transformers.file_utils import is_offline_mode
49
from transformers.trainer_utils import get_last_checkpoint
50
from transformers.utils import check_min_version
51
from transformers.utils.versions import require_version
52
53


54
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Patrick von Platen's avatar
Patrick von Platen committed
55
check_min_version("4.16.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
56

57
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
58

59
60
logger = logging.getLogger(__name__)

61
62
try:
    nltk.data.find("tokenizers/punkt")
Stas Bekman's avatar
Stas Bekman committed
63
except (LookupError, OSError):
64
65
66
67
68
69
70
    if is_offline_mode():
        raise LookupError(
            "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
        )
    with FileLock(".lock") as lock:
        nltk.download("punkt", quiet=True)

71
72
73
# A list of all multilingual tokenizer which require lang attribute.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast]

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
109
110
111
112
113
114
115
    resize_position_embeddings: Optional[bool] = field(
        default=None,
        metadata={
            "help": "Whether to automatically resize the position embeddings if `max_source_length` exceeds "
            "the model's position embeddings."
        },
    )
116
117
118
119
120
121
122
123


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

124
125
    lang: str = field(default=None, metadata={"help": "Language id for summarization."})

126
127
128
129
130
131
132
133
134
135
136
137
138
139
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    summary_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
140
141
142
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
143
144
    validation_file: Optional[str] = field(
        default=None,
145
        metadata={
146
            "help": "An optional input evaluation data file to evaluate the metrics (rouge) on "
147
148
149
150
151
152
            "(a jsonlines or csv file)."
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
153
            "help": "An optional input test data file to evaluate the metrics (rouge) on " "(a jsonlines or csv file)."
154
        },
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    val_max_target_length: Optional[int] = field(
178
        default=None,
179
180
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
181
            "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
            "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
            "during ``evaluate`` and ``predict``."
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
201
    max_eval_samples: Optional[int] = field(
202
203
        default=None,
        metadata={
204
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
205
206
207
            "value if set."
        },
    )
208
    max_predict_samples: Optional[int] = field(
209
210
        default=None,
        metadata={
211
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
212
213
214
215
216
217
218
219
220
221
            "value if set."
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
            "help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
            "which is used during ``evaluate`` and ``predict``."
        },
    )
222
223
224
225
226
227
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
228
    source_prefix: Optional[str] = field(
229
230
231
232
233
234
235
236
237
238
        default="", metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )

    forced_bos_token: Optional[str] = field(
        default=None,
        metadata={
            "help": "The token to force as the first generated token after the decoder_start_token_id."
            "Useful for multilingual models like mBART where the first generated token"
            "needs to be the target language token (Usually it is the target language token)"
        },
239
    )
240
241
242
243

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
244
245
246
        elif self.lang is None:
            raise ValueError("Need to specify the language.")

247
248
249
250
251
252
253
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
254
255
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
256
257
258


summarization_name_mapping = {
259
260
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
261
    "cnn_dailymail": ("article", "highlights"),
262
263
264
265
266
267
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
268
    "xsum": ("document", "summary"),
269
    "wiki_summary": ("article", "highlights"),
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

286
287
    # Setup logging
    logging.basicConfig(
288
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
289
290
291
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
292
293
294
295
296
297
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
298
299
300
301
302
303
304
305

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

306
307
308
309
310
311
312
313
314
315
316
317
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )

318
319
320
321
322
323
324
325
326
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
327
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
328
329
330
331
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
332
333
334
335
336
337
338
339

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
340
341
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
342
343
344
345
346
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
347
348
349
        raw_datasets = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
        )
350
351
352
353
354
355
356
357
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
358
359
360
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
361
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

Suraj Patil's avatar
Suraj Patil committed
392
393
    model.resize_token_embeddings(len(tokenizer))

394
395
396
397
398
399
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.lang)

400
401
402
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

403
404
405
406
407
408
    if (
        hasattr(model.config, "max_position_embeddings")
        and model.config.max_position_embeddings < data_args.max_source_length
    ):
        if model_args.resize_position_embeddings is None:
            logger.warning(
Suraj Patil's avatar
Suraj Patil committed
409
                f"Increasing the model's number of position embedding vectors from {model.config.max_position_embeddings} "
410
411
412
413
414
415
416
417
418
419
420
421
                f"to {data_args.max_source_length}."
            )
            model.resize_position_embeddings(data_args.max_source_length)
        elif model_args.resize_position_embeddings:
            model.resize_position_embeddings(data_args.max_source_length)
        else:
            raise ValueError(
                f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has {model.config.max_position_embeddings}"
                f" position encodings. Consider either reducing `--max_source_length` to {model.config.max_position_embeddings} or to automatically "
                "resize the model's position encodings by passing `--resize_position_embeddings`."
            )

422
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
423

424
425
426
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
427
        column_names = raw_datasets["train"].column_names
428
    elif training_args.do_eval:
429
        column_names = raw_datasets["validation"].column_names
430
    elif training_args.do_predict:
431
        column_names = raw_datasets["test"].column_names
432
433
434
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
435

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert (
            data_args.lang is not None
        ), f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --lang argument"

        tokenizer.src_lang = data_args.lang
        tokenizer.tgt_lang = data_args.lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
        )
        model.config.forced_bos_token_id = forced_bos_token_id

451
452
453
454
    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
455
    else:
456
457
458
459
460
461
462
463
464
465
466
467
468
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )
469
470
471
472
473

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

474
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
475
        logger.warning(
476
477
478
479
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

480
    def preprocess_function(examples):
481
        # remove pairs where at least one record is None
482

483
484
485
486
487
488
        inputs, targets = [], []
        for i in range(len(examples[text_column])):
            if examples[text_column][i] is not None and examples[summary_column][i] is not None:
                inputs.append(examples[text_column][i])
                targets.append(examples[summary_column][i])

489
490
        inputs = examples[text_column]
        targets = examples[summary_column]
491
        inputs = [prefix + inp for inp in inputs]
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
509
        if "train" not in raw_datasets:
510
            raise ValueError("--do_train requires a train dataset")
511
        train_dataset = raw_datasets["train"]
512
513
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
514
515
516
517
518
519
520
521
522
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
523
524
525

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
526
        if "validation" not in raw_datasets:
527
            raise ValueError("--do_eval requires a validation dataset")
528
        eval_dataset = raw_datasets["validation"]
529
530
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
531
532
533
534
535
536
537
538
539
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
540

541
542
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
543
        if "test" not in raw_datasets:
544
            raise ValueError("--do_predict requires a test dataset")
545
        predict_dataset = raw_datasets["test"]
546
547
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
548
549
550
551
552
553
554
555
556
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
557

558
559
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
560
561
562
563
564
565
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )
566
567

    # Metric
568
    metric = load_metric("rouge")
569

570
571
572
573
574
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
575
576
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
577
578
579

        return preds, labels

580
581
582
583
584
585
586
587
588
589
590
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
591
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
592

593
594
595
        result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
        # Extract a few results from ROUGE
        result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
596
597
598

        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
599
        result = {k: round(v, 4) for k, v in result.items()}
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
615
616
617
618
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
619
620
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
621
622
        trainer.save_model()  # Saves the tokenizer too for easy upload

623
624
625
626
627
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
628

629
630
631
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
632
633

    # Evaluation
634
    results = {}
635
636
637
638
639
640
    max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_target_length
    )
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
641
642
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
643
        metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
644
645
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
646

647
648
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
649

650
    if training_args.do_predict:
651
        logger.info("*** Predict ***")
652

653
        predict_results = trainer.predict(
654
            predict_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams
655
        )
656
657
658
659
660
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
661

662
663
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
664

665
        if trainer.is_world_process_zero():
666
            if training_args.predict_with_generate:
667
668
                predictions = tokenizer.batch_decode(
                    predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
669
                )
670
671
672
673
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w") as writer:
                    writer.write("\n".join(predictions))
674

675
676
677
678
679
680
681
682
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
683

684
685
686
    if data_args.lang is not None:
        kwargs["language"] = data_args.lang

687
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
688
        trainer.push_to_hub(**kwargs)
689
690
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
691

692
693
    return results

694
695
696
697
698
699
700
701

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()