modeling_beit.py 51.9 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
# coding=utf-8
NielsRogge's avatar
NielsRogge committed
2
# Copyright 2021 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
NielsRogge's avatar
NielsRogge committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" PyTorch BEiT model."""
NielsRogge's avatar
NielsRogge committed
16
17
18
19


import collections.abc
import math
20
from dataclasses import dataclass
21
from typing import List, Optional, Tuple, Union
NielsRogge's avatar
NielsRogge committed
22
23
24
25

import torch
import torch.utils.checkpoint
from torch import nn
26
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
NielsRogge's avatar
NielsRogge committed
27
28

from ...activations import ACT2FN
29
30
31
32
33
34
from ...file_utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
35
36
37
38
39
40
41
from ...modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPooling,
    MaskedLMOutput,
    SemanticSegmentationModelOutput,
    SequenceClassifierOutput,
)
NielsRogge's avatar
NielsRogge committed
42
43
44
45
46
47
48
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import logging
from .configuration_beit import BeitConfig


logger = logging.get_logger(__name__)

49
# General docstring
NielsRogge's avatar
NielsRogge committed
50
_CONFIG_FOR_DOC = "BeitConfig"
51
52
53
54
55
56
57
58
_FEAT_EXTRACTOR_FOR_DOC = "BeitFeatureExtractor"

# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224-pt22k"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224"
59
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
NielsRogge's avatar
NielsRogge committed
60
61
62
63
64
65
66

BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "microsoft/beit-base-patch16-224",
    # See all BEiT models at https://huggingface.co/models?filter=beit
]


67
68
69
@dataclass
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
    """
70
    Class for outputs of [`BeitModel`].
71
72

    Args:
73
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
74
            Sequence of hidden-states at the output of the last layer of the model.
75
76
77
        pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
            Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
            *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
78
            will be returned.
79
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
80
81
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.
82
83

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
84
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
85
86
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.
87
88
89
90
91
92

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """


NielsRogge's avatar
NielsRogge committed
93
94
95
96
97
98
99
100
101
102
# Inspired by
# https://github.com/rwightman/pytorch-image-models/blob/b9bd960a032c75ca6b808ddeed76bee5f3ed4972/timm/models/layers/helpers.py
# From PyTorch internals
def to_2tuple(x):
    if isinstance(x, collections.abc.Iterable):
        return x
    return (x, x)


# Based on https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py
103
def drop_path(x: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
NielsRogge's avatar
NielsRogge committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

126
    def __init__(self, drop_prob: Optional[float] = None) -> None:
NielsRogge's avatar
NielsRogge committed
127
128
129
        super().__init__()
        self.drop_prob = drop_prob

130
    def forward(self, x: torch.Tensor) -> torch.Tensor:
NielsRogge's avatar
NielsRogge committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class BeitEmbeddings(nn.Module):
    """
    Construct the CLS token, position and patch embeddings. Optionally, also the mask token.

    """

145
    def __init__(self, config: BeitConfig) -> None:
NielsRogge's avatar
NielsRogge committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        super().__init__()

        self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        if config.use_mask_token:
            self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        else:
            self.mask_token = None
        self.patch_embeddings = PatchEmbeddings(
            image_size=config.image_size,
            patch_size=config.patch_size,
            num_channels=config.num_channels,
            embed_dim=config.hidden_size,
        )
        num_patches = self.patch_embeddings.num_patches
        if config.use_absolute_position_embeddings:
            self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
        else:
            self.position_embeddings = None
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

166
    def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor:
NielsRogge's avatar
NielsRogge committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

        embeddings = self.patch_embeddings(pixel_values)
        batch_size, seq_len, _ = embeddings.size()

        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        if bool_masked_pos is not None:
            mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
            # replace the masked visual tokens by mask_tokens
            w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
            embeddings = embeddings * (1 - w) + mask_tokens * w

        embeddings = torch.cat((cls_tokens, embeddings), dim=1)
        if self.position_embeddings is not None:
            embeddings = embeddings + self.position_embeddings
        embeddings = self.dropout(embeddings)

        return embeddings


# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class PatchEmbeddings(nn.Module):
    """
    Image to Patch Embedding.
    """

193
194
195
    def __init__(
        self, image_size: int = 224, patch_size: int = 16, num_channels: int = 3, embed_dim: int = 768
    ) -> None:
NielsRogge's avatar
NielsRogge committed
196
197
198
199
200
201
202
203
204
205
206
207
        super().__init__()
        image_size = to_2tuple(image_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.patch_shape = patch_shape

        self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)

208
    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
NielsRogge's avatar
NielsRogge committed
209
210
211
212
213
214
215
        batch_size, num_channels, height, width = pixel_values.shape
        # FIXME look at relaxing size constraints
        if height != self.image_size[0] or width != self.image_size[1]:
            raise ValueError(
                f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
            )
        x = self.projection(pixel_values).flatten(2).transpose(1, 2)
216

NielsRogge's avatar
NielsRogge committed
217
218
219
220
        return x


class BeitSelfAttention(nn.Module):
221
    def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
NielsRogge's avatar
NielsRogge committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
                f"heads {config.num_attention_heads}."
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

        if window_size:
            self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size)
        else:
            self.relative_position_bias = None

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

249
250
251
252
253
254
255
    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        relative_position_bias: Optional["BeitRelativePositionBias"] = None,
    ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
NielsRogge's avatar
NielsRogge committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        mixed_query_layer = self.query(hidden_states)

        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        query_layer = self.transpose_for_scores(mixed_query_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        # Add relative position bias if present.
        if self.relative_position_bias is not None:
            attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0)

        # Add shared relative position bias if provided.
        if relative_position_bias is not None:
            attention_scores = attention_scores + relative_position_bias

        # Normalize the attention scores to probabilities.
276
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)
NielsRogge's avatar
NielsRogge committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs


class BeitSelfOutput(nn.Module):
    """
    The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    """

303
    def __init__(self, config: BeitConfig) -> None:
NielsRogge's avatar
NielsRogge committed
304
305
306
307
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

308
    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor:
NielsRogge's avatar
NielsRogge committed
309
310
311
312
313
314
315
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return hidden_states


class BeitAttention(nn.Module):
316
    def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
NielsRogge's avatar
NielsRogge committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        super().__init__()
        self.attention = BeitSelfAttention(config, window_size=window_size)
        self.output = BeitSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.attention.query = prune_linear_layer(self.attention.query, index)
        self.attention.key = prune_linear_layer(self.attention.key, index)
        self.attention.value = prune_linear_layer(self.attention.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
        self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

340
341
342
343
344
345
346
    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        relative_position_bias: Optional["BeitRelativePositionBias"] = None,
    ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
NielsRogge's avatar
NielsRogge committed
347
348
349
350
351
352
353
354
355
        self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias)

        attention_output = self.output(self_outputs[0], hidden_states)

        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class BeitIntermediate(nn.Module):
356
    def __init__(self, config: BeitConfig) -> None:
NielsRogge's avatar
NielsRogge committed
357
358
359
360
361
362
363
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

364
    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
NielsRogge's avatar
NielsRogge committed
365
366
367
368
369
370
371
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)

        return hidden_states


class BeitOutput(nn.Module):
372
    def __init__(self, config: BeitConfig) -> None:
NielsRogge's avatar
NielsRogge committed
373
374
375
376
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

377
    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
NielsRogge's avatar
NielsRogge committed
378
379
380
381
382
383
384
385
386
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return hidden_states


class BeitLayer(nn.Module):
    """This corresponds to the Block class in the timm implementation."""

387
    def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0) -> None:
NielsRogge's avatar
NielsRogge committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = BeitAttention(config, window_size=window_size)
        self.intermediate = BeitIntermediate(config)
        self.output = BeitOutput(config)
        self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
        self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        init_values = config.layer_scale_init_value
        if init_values > 0:
            self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
            self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
        else:
            self.lambda_1, self.lambda_2 = None, None

405
406
407
408
409
410
411
    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        relative_position_bias: Optional["BeitRelativePositionBias"] = None,
    ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
NielsRogge's avatar
NielsRogge committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        self_attention_outputs = self.attention(
            self.layernorm_before(hidden_states),  # in BEiT, layernorm is applied before self-attention
            head_mask,
            output_attentions=output_attentions,
            relative_position_bias=relative_position_bias,
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        # apply lambda_1 if present
        if self.lambda_1 is not None:
            attention_output = self.lambda_1 * attention_output

        # first residual connection
        hidden_states = self.drop_path(attention_output) + hidden_states

        # in BEiT, layernorm is also applied after self-attention
        layer_output = self.layernorm_after(hidden_states)

        layer_output = self.intermediate(layer_output)
        layer_output = self.output(layer_output)

        if self.lambda_2 is not None:
            layer_output = self.lambda_2 * layer_output

        # second residual connection
        layer_output = self.drop_path(layer_output) + hidden_states

        outputs = (layer_output,) + outputs

        return outputs


class BeitRelativePositionBias(nn.Module):
446
    def __init__(self, config: BeitConfig, window_size: tuple) -> None:
NielsRogge's avatar
NielsRogge committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        super().__init__()
        self.window_size = window_size
        self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros(self.num_relative_distance, config.num_attention_heads)
        )  # 2*Wh-1 * 2*Ww-1, nH
        # cls to token & token 2 cls & cls to cls

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(window_size[0])
        coords_w = torch.arange(window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * window_size[1] - 1
        relative_position_index = torch.zeros(
            size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
        )
        relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        relative_position_index[0, 0:] = self.num_relative_distance - 3
        relative_position_index[0:, 0] = self.num_relative_distance - 2
        relative_position_index[0, 0] = self.num_relative_distance - 1

        self.register_buffer("relative_position_index", relative_position_index)

475
    def forward(self) -> torch.Tensor:
NielsRogge's avatar
NielsRogge committed
476
477
478
479
480
481
482
483
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
        )  # Wh*Ww,Wh*Ww,nH

        return relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww


class BeitEncoder(nn.Module):
484
    def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
NielsRogge's avatar
NielsRogge committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        super().__init__()
        self.config = config
        if config.use_shared_relative_position_bias:
            self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size)
        else:
            self.relative_position_bias = None

        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
        self.layer = nn.ModuleList(
            [
                BeitLayer(
                    config,
                    window_size=window_size if config.use_relative_position_bias else None,
                    drop_path_rate=dpr[i],
                )
                for i in range(config.num_hidden_layers)
            ]
        )
504
        self.gradient_checkpointing = False
NielsRogge's avatar
NielsRogge committed
505
506
507

    def forward(
        self,
508
509
510
511
512
513
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ) -> Union[tuple, BaseModelOutput]:
NielsRogge's avatar
NielsRogge committed
514
515
516
517
518
519
520
521
522
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

523
            if self.gradient_checkpointing and self.training:
NielsRogge's avatar
NielsRogge committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    layer_head_mask,
                )
            else:
                relative_position_bias = (
                    self.relative_position_bias() if self.relative_position_bias is not None else None
                )
                layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias)

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class BeitPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = BeitConfig
    base_model_prefix = "beit"
567
    main_input_name = "pixel_values"
568
    supports_gradient_checkpointing = True
NielsRogge's avatar
NielsRogge committed
569
570
571

    def _init_weights(self, module):
        """Initialize the weights"""
572
        if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
NielsRogge's avatar
NielsRogge committed
573
574
575
576
577
578
579
580
581
582
583
584
585
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

586
587
588
589
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, BeitEncoder):
            module.gradient_checkpointing = value

NielsRogge's avatar
NielsRogge committed
590
591

BEIT_START_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
592
593
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
NielsRogge's avatar
NielsRogge committed
594
595
596
    behavior.

    Parameters:
597
        config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
NielsRogge's avatar
NielsRogge committed
598
            Initializing with a config file does not load the weights associated with the model, only the
Sylvain Gugger's avatar
Sylvain Gugger committed
599
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
NielsRogge's avatar
NielsRogge committed
600
601
602
603
"""

BEIT_INPUTS_DOCSTRING = r"""
    Args:
604
605
606
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`BeitFeatureExtractor`]. See
            [`BeitFeatureExtractor.__call__`] for details.
NielsRogge's avatar
NielsRogge committed
607

608
609
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
NielsRogge's avatar
NielsRogge committed
610
611
612
613

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

614
615
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
NielsRogge's avatar
NielsRogge committed
616
            tensors for more detail.
617
618
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
NielsRogge's avatar
NielsRogge committed
619
            more detail.
620
621
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
NielsRogge's avatar
NielsRogge committed
622
623
624
625
626
627
628
629
"""


@add_start_docstrings(
    "The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
    BEIT_START_DOCSTRING,
)
class BeitModel(BeitPreTrainedModel):
630
    def __init__(self, config: BeitConfig, add_pooling_layer: bool = True) -> None:
NielsRogge's avatar
NielsRogge committed
631
632
633
634
635
636
637
638
639
640
641
        super().__init__(config)
        self.config = config

        self.embeddings = BeitEmbeddings(config)
        self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)

        self.layernorm = (
            nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        )
        self.pooler = BeitPooler(config) if add_pooling_layer else None

642
643
        # Initialize weights and apply final processing
        self.post_init()
NielsRogge's avatar
NielsRogge committed
644
645
646
647
648
649
650
651
652
653
654
655
656

    def get_input_embeddings(self):
        return self.embeddings.patch_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
657
658
659
660
661
662
663
664
    @add_code_sample_docstrings(
        processor_class=_FEAT_EXTRACTOR_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BeitModelOutputWithPooling,
        config_class=_CONFIG_FOR_DOC,
        modality="vision",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
NielsRogge's avatar
NielsRogge committed
665
666
    def forward(
        self,
667
668
669
670
671
672
673
        pixel_values: Optional[torch.Tensor] = None,
        bool_masked_pos: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, BeitModelOutputWithPooling]:
NielsRogge's avatar
NielsRogge committed
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(pixel_values, bool_masked_pos)

        encoder_outputs = self.encoder(
            embedding_output,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        sequence_output = self.layernorm(sequence_output)
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

706
        return BeitModelOutputWithPooling(
NielsRogge's avatar
NielsRogge committed
707
708
709
710
711
712
713
714
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


class BeitPooler(nn.Module):
715
    def __init__(self, config: BeitModel) -> None:
NielsRogge's avatar
NielsRogge committed
716
717
718
719
720
        super().__init__()
        self.layernorm = (
            nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
        )

721
    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
NielsRogge's avatar
NielsRogge committed
722
723
724
725
726
727
728
729
730
731
732
733
        if self.layernorm is not None:
            # Mean pool the final hidden states of the patch tokens
            patch_tokens = hidden_states[:, 1:, :]
            pooled_output = self.layernorm(patch_tokens.mean(1))
        else:
            # Pool by simply taking the final hidden state of the [CLS] token
            pooled_output = hidden_states[:, 0]

        return pooled_output


@add_start_docstrings(
734
735
    "Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).",
    BEIT_START_DOCSTRING,
NielsRogge's avatar
NielsRogge committed
736
737
)
class BeitForMaskedImageModeling(BeitPreTrainedModel):
738
    def __init__(self, config: BeitModel) -> None:
NielsRogge's avatar
NielsRogge committed
739
740
741
742
743
744
745
746
747
        super().__init__(config)

        self.num_labels = config.num_labels
        self.beit = BeitModel(config, add_pooling_layer=False)

        # Classifier head
        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)

748
749
        # Initialize weights and apply final processing
        self.post_init()
NielsRogge's avatar
NielsRogge committed
750
751
752
753
754

    @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
755
756
757
758
759
760
761
762
        pixel_values: Optional[torch.Tensor] = None,
        bool_masked_pos: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, MaskedLMOutput]:
NielsRogge's avatar
NielsRogge committed
763
        r"""
764
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
765
766
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).

767
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
768
769
770
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
NielsRogge's avatar
NielsRogge committed
771
772
773

        Returns:

774
        Examples:
NielsRogge's avatar
NielsRogge committed
775

776
777
        ```python
        >>> from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling
778
        >>> import torch
779
780
        >>> from PIL import Image
        >>> import requests
NielsRogge's avatar
NielsRogge committed
781

Sylvain Gugger's avatar
Sylvain Gugger committed
782
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
783
        >>> image = Image.open(requests.get(url, stream=True).raw)
NielsRogge's avatar
NielsRogge committed
784

Sylvain Gugger's avatar
Sylvain Gugger committed
785
786
        >>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
        >>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
NielsRogge's avatar
NielsRogge committed
787

788
789
790
791
792
793
794
795
796
        >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
        >>> pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
        >>> # create random boolean mask of shape (batch_size, num_patches)
        >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()

        >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
        >>> loss, logits = outputs.loss, outputs.logits
        >>> list(logits.shape)
        [1, 196, 8192]
797
        ```"""
NielsRogge's avatar
NielsRogge committed
798
799
800
801
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.beit(
            pixel_values,
802
            bool_masked_pos=bool_masked_pos,
NielsRogge's avatar
NielsRogge committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        sequence_output = self.layernorm(sequence_output)
        prediction_scores = self.lm_head(sequence_output[:, 1:])

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels)

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
    hidden states of the patch tokens) e.g. for ImageNet.
    """,
    BEIT_START_DOCSTRING,
)
class BeitForImageClassification(BeitPreTrainedModel):
838
    def __init__(self, config: BeitModel) -> None:
NielsRogge's avatar
NielsRogge committed
839
840
841
842
843
844
845
846
        super().__init__(config)

        self.num_labels = config.num_labels
        self.beit = BeitModel(config, add_pooling_layer=True)

        # Classifier head
        self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()

847
848
        # Initialize weights and apply final processing
        self.post_init()
NielsRogge's avatar
NielsRogge committed
849
850

    @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
851
852
853
854
855
856
857
    @add_code_sample_docstrings(
        processor_class=_FEAT_EXTRACTOR_FOR_DOC,
        checkpoint=_IMAGE_CLASS_CHECKPOINT,
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
    )
NielsRogge's avatar
NielsRogge committed
858
859
    def forward(
        self,
860
861
862
863
864
865
866
        pixel_values: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, SequenceClassifierOutput]:
NielsRogge's avatar
NielsRogge committed
867
        r"""
868
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
869
870
871
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
872
        """
NielsRogge's avatar
NielsRogge committed
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        outputs = self.beit(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs.pooler_output if return_dict else outputs[1]

        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
888
889
890
891
892
893
894
895
896
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
NielsRogge's avatar
NielsRogge committed
897
                loss_fct = MSELoss()
898
899
900
901
902
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
NielsRogge's avatar
NielsRogge committed
903
904
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
905
906
907
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
NielsRogge's avatar
NielsRogge committed
908
909
910
911
912
913
914
915
916
917
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
918
919
920
921
922
923
924
925
926
927


class BeitConvModule(nn.Module):
    """
    A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
    layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).

    Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
    """

928
929
930
931
932
933
934
935
936
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int]],
        padding: Union[int, Tuple[int, int], str] = 0,
        bias: bool = False,
        dilation: Union[int, Tuple[int, int]] = 1,
    ) -> None:
937
938
939
940
941
942
943
944
945
946
947
948
        super().__init__()
        self.conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            padding=padding,
            bias=bias,
            dilation=dilation,
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.activation = nn.ReLU()

949
    def forward(self, input: torch.Tensor) -> torch.Tensor:
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
        output = self.conv(input)
        output = self.bn(output)
        output = self.activation(output)

        return output


class BeitPyramidPoolingModule(nn.ModuleList):
    """
    Pyramid Pooling Module (PPM) used in PSPNet.

    Args:
        pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
            Module.
        in_channels (int): Input channels.
        channels (int): Channels after modules, before conv_seg.
        align_corners (bool): align_corners argument of F.interpolate.

    Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
    """

971
    def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None:
972
973
974
975
976
977
978
979
980
981
982
983
984
        super().__init__()
        self.pool_scales = pool_scales
        self.align_corners = align_corners
        self.in_channels = in_channels
        self.channels = channels
        for pool_scale in pool_scales:
            self.append(
                nn.Sequential(
                    nn.AdaptiveAvgPool2d(pool_scale),
                    BeitConvModule(self.in_channels, self.channels, kernel_size=1),
                )
            )

985
    def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
986
987
988
989
990
991
992
993
994
995
996
997
        ppm_outs = []
        for ppm in self:
            ppm_out = ppm(x)
            upsampled_ppm_out = nn.functional.interpolate(
                ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
            )
            ppm_outs.append(upsampled_ppm_out)
        return ppm_outs


class BeitUperHead(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
998
999
    Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
    [UPerNet](https://arxiv.org/abs/1807.10221).
1000
1001
1002
1003

    Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
    """

1004
    def __init__(self, config: BeitConfig) -> None:
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        super().__init__()

        self.pool_scales = config.pool_scales  # e.g. (1, 2, 3, 6)
        self.in_channels = [config.hidden_size] * 4  # e.g. [768, 768, 768, 768]
        self.channels = config.hidden_size
        self.align_corners = False
        self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)

        # PSP Module
        self.psp_modules = BeitPyramidPoolingModule(
            self.pool_scales,
            self.in_channels[-1],
            self.channels,
            align_corners=self.align_corners,
        )
        self.bottleneck = BeitConvModule(
            self.in_channels[-1] + len(self.pool_scales) * self.channels,
            self.channels,
            kernel_size=3,
            padding=1,
        )
        # FPN Module
        self.lateral_convs = nn.ModuleList()
        self.fpn_convs = nn.ModuleList()
        for in_channels in self.in_channels[:-1]:  # skip the top layer
            l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1)
            fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1)
            self.lateral_convs.append(l_conv)
            self.fpn_convs.append(fpn_conv)

        self.fpn_bottleneck = BeitConvModule(
            len(self.in_channels) * self.channels,
            self.channels,
            kernel_size=3,
            padding=1,
        )

    def psp_forward(self, inputs):
        x = inputs[-1]
        psp_outs = [x]
        psp_outs.extend(self.psp_modules(x))
        psp_outs = torch.cat(psp_outs, dim=1)
        output = self.bottleneck(psp_outs)

        return output

1051
    def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
1052
1053
1054
1055
1056
1057
1058
1059
1060
        # build laterals
        laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]

        laterals.append(self.psp_forward(encoder_hidden_states))

        # build top-down path
        used_backbone_levels = len(laterals)
        for i in range(used_backbone_levels - 1, 0, -1):
            prev_shape = laterals[i - 1].shape[2:]
1061
            laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
                laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
            )

        # build outputs
        fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
        # append psp feature
        fpn_outs.append(laterals[-1])

        for i in range(used_backbone_levels - 1, 0, -1):
            fpn_outs[i] = nn.functional.interpolate(
                fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
            )
        fpn_outs = torch.cat(fpn_outs, dim=1)
        output = self.fpn_bottleneck(fpn_outs)
        output = self.classifier(output)

        return output


class BeitFCNHead(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1083
1084
    Fully Convolution Networks for Semantic Segmentation. This head is implemented of
    [FCNNet](https://arxiv.org/abs/1411.4038>).
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095

    Args:
        config (BeitConfig): Configuration.
        in_channels
        kernel_size (int): The kernel size for convs in the head. Default: 3.
        dilation (int): The dilation rate for convs in the head. Default: 1.


    Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
    """

1096
1097
1098
    def __init__(
        self, config: BeitConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1
    ) -> None:
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
        super().__init__()
        self.in_channels = config.hidden_size
        self.channels = config.auxiliary_channels
        self.num_convs = config.auxiliary_num_convs
        self.concat_input = config.auxiliary_concat_input
        self.in_index = in_index

        conv_padding = (kernel_size // 2) * dilation
        convs = []
        convs.append(
            BeitConvModule(
                self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
            )
        )
        for i in range(self.num_convs - 1):
            convs.append(
                BeitConvModule(
                    self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
                )
            )
        if self.num_convs == 0:
            self.convs = nn.Identity()
        else:
            self.convs = nn.Sequential(*convs)
        if self.concat_input:
            self.conv_cat = BeitConvModule(
                self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
            )

        self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)

1130
    def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
        # just take the relevant feature maps
        hidden_states = encoder_hidden_states[self.in_index]
        output = self.convs(hidden_states)
        if self.concat_input:
            output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
        output = self.classifier(output)
        return output


@add_start_docstrings(
    """
    Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
    """,
    BEIT_START_DOCSTRING,
)
class BeitForSemanticSegmentation(BeitPreTrainedModel):
1147
    def __init__(self, config: BeitConfig) -> None:
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        super().__init__(config)

        self.num_labels = config.num_labels
        self.beit = BeitModel(config, add_pooling_layer=False)

        # FPNs
        self.fpn1 = nn.Sequential(
            nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
            nn.BatchNorm2d(config.hidden_size),
            nn.GELU(),
            nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
        )
        self.fpn2 = nn.Sequential(
            nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
        )
        self.fpn3 = nn.Identity()
        self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)

        # Semantic segmentation head(s)
        self.decode_head = BeitUperHead(config)
        self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None

1170
1171
        # Initialize weights and apply final processing
        self.post_init()
1172

1173
    def compute_loss(self, logits, auxiliary_logits, labels):
1174
        # upsample logits to the images' original size
1175
1176
1177
        upsampled_logits = nn.functional.interpolate(
            logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
        )
1178
1179
1180
1181
1182
        if auxiliary_logits is not None:
            upsampled_auxiliary_logits = nn.functional.interpolate(
                auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
            )
        # compute weighted loss
1183
        loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
1184
1185
1186
1187
1188
1189
1190
        main_loss = loss_fct(upsampled_logits, labels)
        auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
        loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss

        return loss

    @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
1191
    @replace_return_docstrings(output_type=SemanticSegmentationModelOutput, config_class=_CONFIG_FOR_DOC)
1192
1193
    def forward(
        self,
1194
1195
1196
1197
1198
1199
1200
        pixel_values: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, SemanticSegmentationModelOutput]:
1201
        r"""
1202
        labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1203
1204
            Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
1205
1206
1207

        Returns:

1208
        Examples:
1209

1210
1211
1212
1213
        ```python
        >>> from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation
        >>> from PIL import Image
        >>> import requests
1214

Sylvain Gugger's avatar
Sylvain Gugger committed
1215
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1216
        >>> image = Image.open(requests.get(url, stream=True).raw)
1217

Sylvain Gugger's avatar
Sylvain Gugger committed
1218
1219
        >>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
        >>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
1220

1221
1222
        >>> inputs = feature_extractor(images=image, return_tensors="pt")
        >>> outputs = model(**inputs)
1223
        >>> # logits are of shape (batch_size, num_labels, height, width)
1224
1225
        >>> logits = outputs.logits
        ```"""
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        outputs = self.beit(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=True,  # we need the intermediate hidden states
            return_dict=return_dict,
        )

        encoder_hidden_states = outputs.hidden_states if return_dict else outputs[2]

        # only keep certain features, and reshape
        # note that we do +1 as the encoder_hidden_states also includes the initial embeddings
        features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
        batch_size = pixel_values.shape[0]
        patch_resolution = self.config.image_size // self.config.patch_size
        features = [
            x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
        ]

        # apply FPNs
        ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
        for i in range(len(features)):
            features[i] = ops[i](features[i])

        logits = self.decode_head(features)
1256

1257
1258
1259
1260
1261
1262
1263
1264
1265
        auxiliary_logits = None
        if self.auxiliary_head is not None:
            auxiliary_logits = self.auxiliary_head(features)

        loss = None
        if labels is not None:
            if self.config.num_labels == 1:
                raise ValueError("The number of labels should be greater than one")
            else:
1266
                loss = self.compute_loss(logits, auxiliary_logits, labels)
1267
1268
1269

        if not return_dict:
            if output_hidden_states:
1270
                output = (logits,) + outputs[2:]
1271
            else:
1272
                output = (logits,) + outputs[3:]
1273
1274
            return ((loss,) + output) if loss is not None else output

1275
1276
1277
1278
1279
1280
        return SemanticSegmentationModelOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states if output_hidden_states else None,
            attentions=outputs.attentions,
        )