test_modeling_tf_common.py 38.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
thomwolf's avatar
thomwolf committed
20
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import tempfile
22
import unittest
23
from importlib import import_module
thomwolf's avatar
thomwolf committed
24

25
from transformers import is_tf_available, is_torch_available
Julien Plu's avatar
Julien Plu committed
26
from transformers.testing_utils import _tf_gpu_memory_limit, require_tf, slow
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_tf_available():
thomwolf's avatar
thomwolf committed
30
    import tensorflow as tf
thomwolf's avatar
thomwolf committed
31
    import numpy as np
32

33
34
35
36
37
    from transformers import (
        tf_top_k_top_p_filtering,
        TFAdaptiveEmbedding,
        TFSharedEmbeddings,
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
38
39
40
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
41
42
43
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
44
    )
45

Julien Chaumond's avatar
Julien Chaumond committed
46
47
48
49
50
51
52
53
54
55
56
57
58
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
                tf.config.experimental.set_virtual_device_configuration(
                    gpu, [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
                )
                logical_gpus = tf.config.experimental.list_logical_devices("GPU")
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
59

60

thomwolf's avatar
thomwolf committed
61
62
63
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
64
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
65
66
67
68
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


69
70
@require_tf
class TFModelTesterMixin:
71

72
73
    model_tester = None
    all_model_classes = ()
74
    all_generative_model_classes = ()
75
76
77
78
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    is_encoder_decoder = False
79

80
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
81
        if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
82
            inputs_dict = {
83
84
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
85
86
87
                else v
                for k, v in inputs_dict.items()
            }
88
89
90
91
92
93
94
95
96
97
98

        if return_labels:
            if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size)
            elif model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size)
            elif model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size)
            elif model_class in TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values():
                inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, self.model_tester.seq_length))
99
100
101
102
103
104
            elif model_class in TF_MODEL_FOR_CAUSAL_LM_MAPPING.values():
                inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, self.model_tester.seq_length))
            elif model_class in TF_MODEL_FOR_MASKED_LM_MAPPING.values():
                inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, self.model_tester.seq_length))
            elif model_class in TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values():
                inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, self.model_tester.seq_length))
105
106
        return inputs_dict

107
108
109
    def test_initialization(self):
        pass
        # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
110

111
112
113
114
115
116
117
        # configs_no_init = _config_zero_init(config)
        # for model_class in self.all_model_classes:
        #     model = model_class(config=configs_no_init)
        #     for name, param in model.named_parameters():
        #         if param.requires_grad:
        #             self.assertIn(param.data.mean().item(), [0.0, 1.0],
        #             msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
118

119
120
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
121

122
123
        for model_class in self.all_model_classes:
            model = model_class(config)
124
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
125

126
            with tempfile.TemporaryDirectory() as tmpdirname:
127
128
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
129
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
130

131
                self.assert_outputs_same(after_outputs, outputs)
132

Julien Plu's avatar
Julien Plu committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    @slow
    def test_saved_model_with_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True

        for model_class in self.all_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            num_out = len(model(inputs_dict))
            model._saved_model_inputs_spec = None
            model._set_save_spec(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                tf.saved_model.save(model, tmpdirname)
                model = tf.keras.models.load_model(tmpdirname)
                outputs = model(inputs_dict)
                hidden_states = [t.numpy() for t in outputs[-1]]
                self.assertEqual(len(outputs), num_out)
                self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size],
                )

    @slow
    def test_saved_model_with_attentions_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        encoder_seq_length = (
            self.model_tester.encoder_seq_length
            if hasattr(self.model_tester, "encoder_seq_length")
            else self.model_tester.seq_length
        )
        encoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
        )

        for model_class in self.all_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            num_out = len(model(inputs_dict))
            model._saved_model_inputs_spec = None
            model._set_save_spec(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                tf.saved_model.save(model, tmpdirname)
                model = tf.keras.models.load_model(tmpdirname)
                outputs = model(inputs_dict)
                attentions = [t.numpy() for t in outputs[-1]]
                self.assertEqual(len(outputs), num_out)
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )

188
189
190
191
192
193
194
195
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
196
            if module_member_name.endswith("MainLayer")
197
            for module_member in (getattr(module, module_member_name),)
198
199
200
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
201
202
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
203
204
205
206
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
207
                config.use_cache = False
Julien Plu's avatar
Julien Plu committed
208
209
210
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
211
212
213
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
214

215
216
217
218
219
220
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
221
222
223
224
225
226
227
228
229
230
231
232
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
233
234
235
236
237
238
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
239
240
241
242
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
        else:
            out_1 = after_outputs[0].numpy()
243
        out_2 = outputs[0].numpy()
244
        self.assertEqual(out_1.shape, out_2.shape)
245
246
247
248
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
249

250
251
252
    def test_pt_tf_model_equivalence(self):
        if not is_torch_available():
            return
thomwolf's avatar
thomwolf committed
253

254
255
        import torch
        import transformers
thomwolf's avatar
thomwolf committed
256

257
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
258

259
260
261
        for model_class in self.all_model_classes:
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beggining
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
262

263
            config.output_hidden_states = True
264

265
266
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
267

268
            # Check we can load pt model in tf and vice-versa with model => model functions
269

270
271
272
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
            )
273
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
274

275
276
277
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
278
279
                (name, torch.from_numpy(key.numpy()).to(torch.long))
                for name, key in self._prepare_for_class(inputs_dict, model_class).items()
280
            )
281
282
283
284
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

285
286
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
287
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
288
289
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
290

291
292
293
294
295
296
297
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
298

299
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
300
301
302
303
304
305
306
            # Debug info (remove when fixed)
            if max_diff >= 2e-2:
                print("===")
                print(model_class)
                print(config)
                print(inputs_dict)
                print(pt_inputs_dict)
307
308
309
            self.assertLessEqual(max_diff, 2e-2)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
310
            with tempfile.TemporaryDirectory() as tmpdirname:
311
312
313
314
315
316
317
318
319
320
321
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
322
323
                (name, torch.from_numpy(key.numpy()).to(torch.long))
                for name, key in self._prepare_for_class(inputs_dict, model_class).items()
324
            )
325
326
327
328
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

329
330
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
331
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
332
333
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
334
335
336
337
338
339
340
341
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

342
343
344
345
346
347
348
349
350
351
352
            max_diff = np.amax(np.abs(tfo - pto))
            self.assertLessEqual(max_diff, 2e-2)

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
353
354
355
356
357
            if self.is_encoder_decoder:
                input_ids = {
                    "decoder_input_ids": tf.keras.Input(
                        batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"
                    ),
358
                    "input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
359
360
361
362
363
364
                }
            elif model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                input_ids = tf.keras.Input(batch_shape=(4, 2, 2000), name="input_ids", dtype="int32")
            else:
                input_ids = tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32")

365
366
367
368
            # Prepare our model
            model = model_class(config)

            # Let's load it from the disk to be sure we can use pretrained weights
369
            with tempfile.TemporaryDirectory() as tmpdirname:
370
                outputs = model(self._prepare_for_class(inputs_dict, model_class))  # build the model
371
372
373
374
375
376
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids)
            hidden_states = outputs_dict[0]

377
            # Add a dense layer on top to test integration with other keras modules
378
379
380
381
382
383
384
385
386
387
388
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
389
            outputs_dict = model(self._prepare_for_class(inputs_dict, model_class))
390

391
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
392
            input_ids = inputs_keywords.pop("input_ids", None)
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
            outputs_keywords = model(input_ids, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        decoder_seq_length = (
            self.model_tester.decoder_seq_length
            if hasattr(self.model_tester, "decoder_seq_length")
            else self.model_tester.seq_length
        )
        encoder_seq_length = (
            self.model_tester.encoder_seq_length
            if hasattr(self.model_tester, "encoder_seq_length")
            else self.model_tester.seq_length
        )
        decoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
        )
        encoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
        )

        for model_class in self.all_model_classes:
420
            inputs_dict["output_attentions"] = True
421
422
            config.output_hidden_states = False
            model = model_class(config)
423
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
424
425
426
427
428
429
            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
430
            )
431
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
432

433
434
435
            if self.is_encoder_decoder:
                self.assertEqual(out_len % 2, 0)
                decoder_attentions = outputs[(out_len // 2) - 1]
436
                self.assertEqual(model.config.output_hidden_states, False)
437
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
438
                self.assertListEqual(
439
440
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
441
                )
thomwolf's avatar
thomwolf committed
442

443
444
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
445
            config.output_attentions = True
446
            model = model_class(config)
447
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
448
449
450
451
452
453
454
455
456
457
            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
458
459
            config.output_hidden_states = True
            model = model_class(config)
460
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
461
462
463
464
465
466
467
468
469
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)

            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )
470

471
472
473
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
474
        def check_hidden_states_output(config, inputs_dict, model_class):
475
            model = model_class(config)
476
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
477
478
479
            hidden_states = [t.numpy() for t in outputs[-1]]
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
            self.assertListEqual(
480
                list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size],
481
            )
482

Joseph Liu's avatar
Joseph Liu committed
483
484
485
486
487
488
489
490
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

491
492
493
494
495
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
496
            assert isinstance(model.get_input_embeddings(), (tf.keras.layers.Layer, TFAdaptiveEmbedding))
497
498
499
500
501
502
503
504
            x = model.get_output_embeddings()
            assert x is None or isinstance(x, tf.keras.layers.Layer)

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
505
            first, second = (
506
507
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
508
            )
509
510
511
512
513
514
515
516
517
518
519
520
521
522
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

    def _get_embeds(self, wte, input_ids):
        # ^^ In our TF models, the input_embeddings can take slightly different forms,
        # so we try a few of them.
        # We used to fall back to just synthetically creating a dummy tensor of ones:
        try:
            x = wte(input_ids, mode="embedding")
        except Exception:
thomwolf's avatar
thomwolf committed
523
            try:
524
                x = wte([input_ids], mode="embedding")
525
            except Exception:
thomwolf's avatar
thomwolf committed
526
                try:
527
                    x = wte([input_ids, None, None, None], mode="embedding")
528
                except Exception:
529
                    if hasattr(self.model_tester, "embedding_size"):
530
                        x = tf.ones(input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32,)
531
                    else:
532
                        x = tf.ones(input_ids.shape + [self.model_tester.hidden_size], dtype=tf.dtypes.float32,)
533
534
535
536
537
538
539
540
        return x

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

541
542
543
544
545
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
546
                encoder_input_ids = inputs["input_ids"]
547
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
548
                del inputs["input_ids"]
549
550
                inputs.pop("decoder_input_ids", None)

551
            wte = model.get_input_embeddings()
thomwolf's avatar
thomwolf committed
552
            if not self.is_encoder_decoder:
553
                inputs["inputs_embeds"] = self._get_embeds(wte, input_ids)
thomwolf's avatar
thomwolf committed
554
            else:
555
556
                inputs["inputs_embeds"] = self._get_embeds(wte, encoder_input_ids)
                inputs["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids)
557

558
            model(inputs)
559

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INPUT_SHAPE = [1, 10, config.hidden_size]
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
                emb_old = model.get_input_embeddings()
                emb_old.build(INPUT_SHAPE)
                # reshape the embeddings
                new_embeddings = model._get_resized_embeddings(emb_old, size)
                # # check that the the resized embeddings size matches the desired size.
                assert_size = size if size is not None else config.vocab_size
                self.assertEqual(new_embeddings.shape[0], assert_size)
                # check that weights remain the same after resizing
                emd_old_weights = model._get_word_embeddings(emb_old)
                models_equal = True
                for p1, p2 in zip(emd_old_weights.numpy(), new_embeddings.numpy()):
                    if np.sum(abs(p1 - p2)) > 0:
                        models_equal = False
                self.assertTrue(models_equal)

584
    def test_lm_head_model_random_no_beam_search_generate(self):
585
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
586
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
587

588
        # iterate over all generative models
589
590
591
592
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
593
                # if bos token id is not defined mobel needs input_ids
594
                with self.assertRaises(AssertionError):
595
                    model.generate(do_sample=True, max_length=5)
596
                # num_return_sequences = 1
597
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
598
            else:
599
                # num_return_sequences = 1
600
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
601
602

            with self.assertRaises(AssertionError):
603
                # generating multiple sequences when no beam search generation
604
605
606
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

607
608
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
609
610

            # check bad words tokens language generation
611
612
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
613
            output_tokens = model.generate(
614
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
615
            )
616
            # only count generated tokens
617
618
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
619

620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2, num_return_sequences=2,))
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
646
            output_tokens = model.generate(
647
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
648
            )
649
            # only count generated tokens
650
651
652
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

653
654
655
656
657
658
659
660
661
662
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                added_label = prepared_for_class[list(prepared_for_class.keys() - inputs_dict.keys())[0]]
                loss_size = tf.size(added_label)

663
664
665
666
667
                if model.__class__ in TF_MODEL_FOR_CAUSAL_LM_MAPPING.values():
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

668
669
670
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_ids = prepared_for_class.pop("input_ids")
671

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
                loss = model(input_ids, **prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
                signature = inspect.getfullargspec(model.call)[0]

                # Create a dictionary holding the location of the tensors in the tuple
                tuple_index_mapping = {1: "input_ids"}
                for label_key in label_keys:
                    label_key_index = signature.index(label_key)
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())

                # Initialize a list with None, update the values and convert to a tuple
                list_input = [None] * sorted_tuple_index_mapping[-1][0]
                for index, value in sorted_tuple_index_mapping:
                    list_input[index - 1] = prepared_for_class[value]
                tuple_input = tuple(list_input)

                # Send to model
                loss = model(tuple_input)[0]
                self.assertEqual(loss.shape, [loss_size])

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

722
    def _check_generated_ids(self, output_ids):
723
724
725
726
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

727
728
729
730
731
732
733
734
735
736
737
738
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
739

thomwolf's avatar
thomwolf committed
740
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
741
742
743
744
745
746
747
748
749
750
751
752
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

753
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
754
755

    return output
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850


@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]], dtype=tf.int32,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))), dtype=tf.int32,
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)