"vscode:/vscode.git/clone" did not exist on "2f94a38b187315240ac44c77bdaaaca0314755e1"
run_xnli.py 15.1 KB
Newer Older
1
#!/usr/bin/env python
VictorSanh's avatar
VictorSanh committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
18
    Adapted from `examples/text-classification/run_glue.py`"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22

import logging
import os
import random
23
24
25
import sys
from dataclasses import dataclass, field
from typing import Optional
VictorSanh's avatar
VictorSanh committed
26
27

import numpy as np
28
from datasets import load_dataset, load_metric
VictorSanh's avatar
VictorSanh committed
29

30
import transformers
31
from transformers import (
32
33
34
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
35
36
37
38
39
40
41
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
42
)
43
from transformers.trainer_utils import get_last_checkpoint, is_main_process
44
from transformers.utils import check_min_version
Aymeric Augustin's avatar
Aymeric Augustin committed
45

VictorSanh's avatar
VictorSanh committed
46

47
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
48
check_min_version("4.6.0.dev0")
49

VictorSanh's avatar
VictorSanh committed
50
51
52
logger = logging.getLogger(__name__)


53
54
55
56
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
VictorSanh's avatar
VictorSanh committed
57

58
59
60
61
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """
VictorSanh's avatar
VictorSanh committed
62

63
64
65
66
67
    max_seq_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
68
69
        },
    )
70
71
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
72
    )
73
74
75
76
77
78
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
79
    )
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_val_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
            "value if set."
        },
    )
    max_test_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of test examples to this "
            "value if set."
        },
    )
101
102
    server_ip: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
    server_port: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
VictorSanh's avatar
VictorSanh committed
103
104


105
106
107
108
109
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
VictorSanh's avatar
VictorSanh committed
110

111
112
    model_name_or_path: str = field(
        default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
113
    )
114
115
    language: str = field(
        default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
116
    )
117
118
    train_language: Optional[str] = field(
        default=None, metadata={"help": "Train language if it is different from the evaluation language."}
119
    )
120
121
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
122
    )
123
124
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
125
    )
126
    cache_dir: Optional[str] = field(
127
        default=None,
128
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
129
    )
130
131
132
    do_lower_case: Optional[bool] = field(
        default=False,
        metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
133
    )
134
135
136
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
137
    )
138
139
140
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
141
    )
142
143
144
145
146
147
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
148
149
    )

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
172
            )
VictorSanh's avatar
VictorSanh committed
173
174

    # Setup distant debugging if needed
175
    if data_args.server_ip and data_args.server_port:
VictorSanh's avatar
VictorSanh committed
176
177
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
178

VictorSanh's avatar
VictorSanh committed
179
        print("Waiting for debugger attach")
180
        ptvsd.enable_attach(address=(data_args.server_ip, data_args.server_port), redirect_output=True)
VictorSanh's avatar
VictorSanh committed
181
182
183
        ptvsd.wait_for_attach()

    # Setup logging
184
185
186
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
187
        handlers=[logging.StreamHandler(sys.stdout)],
188
    )
189
190
191
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)

    # Log on each process the small summary:
192
    logger.warning(
193
194
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
195
    )
196

197
    # Set the verbosity to info of the Transformers logger (on main process only):
198
    if is_main_process(training_args.local_rank):
199
200
201
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
202
203
204
205
206
207
208
209
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # Downloading and loading xnli dataset from the hub.
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    if training_args.do_train:
        if model_args.train_language is None:
            train_dataset = load_dataset("xnli", model_args.language, split="train")
        else:
            train_dataset = load_dataset("xnli", model_args.train_language, split="train")
        label_list = train_dataset.features["label"].names

    if training_args.do_eval:
        eval_dataset = load_dataset("xnli", model_args.language, split="validation")
        label_list = eval_dataset.features["label"].names

    if training_args.do_predict:
        test_dataset = load_dataset("xnli", model_args.language, split="test")
        label_list = test_dataset.features["label"].names
224
225

    # Labels
VictorSanh's avatar
VictorSanh committed
226
227
228
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
229
230
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
231
    config = AutoConfig.from_pretrained(
232
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
233
        num_labels=num_labels,
234
235
236
237
        finetuning_task="xnli",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
238
    )
239
    tokenizer = AutoTokenizer.from_pretrained(
240
241
242
243
244
245
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        do_lower_case=model_args.do_lower_case,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
246
    )
247
    model = AutoModelForSequenceClassification.from_pretrained(
248
249
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
250
        config=config,
251
252
253
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
254
    )
VictorSanh's avatar
VictorSanh committed
255

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    # Preprocessing the datasets
    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    def preprocess_function(examples):
        # Tokenize the texts
        return tokenizer(
            examples["premise"],
            examples["hypothesis"],
            padding=padding,
            max_length=data_args.max_seq_length,
            truncation=True,
        )
VictorSanh's avatar
VictorSanh committed
273

274
275
276
277
278
279
280
281
    if training_args.do_train:
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
        )
282
283
284
        # Log a few random samples from the training set:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
285
286
287
288
289
290
291
292
293

    if training_args.do_eval:
        if data_args.max_val_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
        )
VictorSanh's avatar
VictorSanh committed
294

295
296
297
298
299
300
301
302
    if training_args.do_predict:
        if data_args.max_test_samples is not None:
            test_dataset = test_dataset.select(range(data_args.max_test_samples))
        test_dataset = test_dataset.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
        )
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

    # Get the metric function
    metric = load_metric("xnli")

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return metric.compute(predictions=preds, references=p.label_ids)

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
326
        train_dataset=train_dataset if training_args.do_train else None,
327
328
329
330
331
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )
VictorSanh's avatar
VictorSanh committed
332
333

    # Training
334
335
336
337
338
339
340
341
342
    if training_args.do_train:
        if last_checkpoint is not None:
            model_path = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            model_path = model_args.model_name_or_path
        else:
            model_path = None
        train_result = trainer.train(model_path=model_path)
        metrics = train_result.metrics
343
344
345
346
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
VictorSanh's avatar
VictorSanh committed
347

348
        trainer.save_model()  # Saves the tokenizer too for easy upload
349

350
351
352
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
VictorSanh's avatar
VictorSanh committed
353

354
355
356
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
357
358
359
360
        metrics = trainer.evaluate(eval_dataset=eval_dataset)

        max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
361

362
363
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
VictorSanh's avatar
VictorSanh committed
364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
        predictions, labels, metrics = trainer.predict(test_dataset)

        max_test_samples = data_args.max_test_samples if data_args.max_test_samples is not None else len(test_dataset)
        metrics["test_samples"] = min(max_test_samples, len(test_dataset))

        trainer.log_metrics("test", metrics)
        trainer.save_metrics("test", metrics)

        predictions = np.argmax(predictions, axis=1)
        output_test_file = os.path.join(training_args.output_dir, "test_predictions.txt")
        if trainer.is_world_process_zero():
            with open(output_test_file, "w") as writer:
                writer.write("index\tprediction\n")
                for index, item in enumerate(predictions):
                    item = label_list[item]
                    writer.write(f"{index}\t{item}\n")

VictorSanh's avatar
VictorSanh committed
385
386
387

if __name__ == "__main__":
    main()