run_xnli.py 13.4 KB
Newer Older
1
#!/usr/bin/env python
VictorSanh's avatar
VictorSanh committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
18
    Adapted from `examples/text-classification/run_glue.py`"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22

import logging
import os
import random
23
24
25
import sys
from dataclasses import dataclass, field
from typing import Optional
VictorSanh's avatar
VictorSanh committed
26
27

import numpy as np
28
from datasets import load_dataset, load_metric
VictorSanh's avatar
VictorSanh committed
29

30
import transformers
31
from transformers import (
32
33
34
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
35
36
37
38
39
40
41
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
42
)
43
from transformers.trainer_utils import get_last_checkpoint, is_main_process
Aymeric Augustin's avatar
Aymeric Augustin committed
44

VictorSanh's avatar
VictorSanh committed
45
46
47
48

logger = logging.getLogger(__name__)


49
50
51
52
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
VictorSanh's avatar
VictorSanh committed
53

54
55
56
57
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """
VictorSanh's avatar
VictorSanh committed
58

59
60
61
62
63
    max_seq_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
64
65
        },
    )
66
67
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
68
    )
69
70
71
72
73
74
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
75
    )
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_val_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
            "value if set."
        },
    )
    max_test_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of test examples to this "
            "value if set."
        },
    )
97
98
    server_ip: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
    server_port: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
VictorSanh's avatar
VictorSanh committed
99
100


101
102
103
104
105
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
VictorSanh's avatar
VictorSanh committed
106

107
108
    model_name_or_path: str = field(
        default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
109
    )
110
111
    language: str = field(
        default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
112
    )
113
114
    train_language: Optional[str] = field(
        default=None, metadata={"help": "Train language if it is different from the evaluation language."}
115
    )
116
117
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
118
    )
119
120
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
121
    )
122
    cache_dir: Optional[str] = field(
123
        default=None,
124
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
125
    )
126
127
128
    do_lower_case: Optional[bool] = field(
        default=False,
        metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
129
    )
130
131
132
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
133
    )
134
135
136
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
137
    )
138
139
140
141
142
143
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
144
145
    )

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
168
            )
VictorSanh's avatar
VictorSanh committed
169
170

    # Setup distant debugging if needed
171
    if data_args.server_ip and data_args.server_port:
VictorSanh's avatar
VictorSanh committed
172
173
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
174

VictorSanh's avatar
VictorSanh committed
175
        print("Waiting for debugger attach")
176
        ptvsd.enable_attach(address=(data_args.server_ip, data_args.server_port), redirect_output=True)
VictorSanh's avatar
VictorSanh committed
177
178
179
        ptvsd.wait_for_attach()

    # Setup logging
180
181
182
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
183
        handlers=[logging.StreamHandler(sys.stdout)],
184
    )
185
186
187
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)

    # Log on each process the small summary:
188
    logger.warning(
189
190
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
191
    )
192

193
    # Set the verbosity to info of the Transformers logger (on main process only):
194
    if is_main_process(training_args.local_rank):
195
196
197
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # Downloading and loading xnli dataset from the hub.
    if model_args.train_language is None:
        train_dataset = load_dataset("xnli", model_args.language, split="train")
    else:
        train_dataset = load_dataset("xnli", model_args.train_language, split="train")

    eval_dataset = load_dataset("xnli", model_args.language, split="validation")
    # Labels
    label_list = train_dataset.features["label"].names
VictorSanh's avatar
VictorSanh committed
214
215
216
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
217
218
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
219
    config = AutoConfig.from_pretrained(
220
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
221
        num_labels=num_labels,
222
223
224
225
        finetuning_task="xnli",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
226
    )
227
    tokenizer = AutoTokenizer.from_pretrained(
228
229
230
231
232
233
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        do_lower_case=model_args.do_lower_case,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
234
    )
235
    model = AutoModelForSequenceClassification.from_pretrained(
236
237
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
238
        config=config,
239
240
241
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
242
    )
VictorSanh's avatar
VictorSanh committed
243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    # Preprocessing the datasets
    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    def preprocess_function(examples):
        # Tokenize the texts
        return tokenizer(
            examples["premise"],
            examples["hypothesis"],
            padding=padding,
            max_length=data_args.max_seq_length,
            truncation=True,
        )
VictorSanh's avatar
VictorSanh committed
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    if training_args.do_train:
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        if data_args.max_val_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
        )
VictorSanh's avatar
VictorSanh committed
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # Get the metric function
    metric = load_metric("xnli")

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return metric.compute(predictions=preds, references=p.label_ids)

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )
VictorSanh's avatar
VictorSanh committed
312
313

    # Training
314
315
316
317
318
319
320
321
322
    if training_args.do_train:
        if last_checkpoint is not None:
            model_path = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            model_path = model_args.model_name_or_path
        else:
            model_path = None
        train_result = trainer.train(model_path=model_path)
        metrics = train_result.metrics
323
324
325
326
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
VictorSanh's avatar
VictorSanh committed
327

328
        trainer.save_model()  # Saves the tokenizer too for easy upload
329

330
331
332
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
VictorSanh's avatar
VictorSanh committed
333

334
335
336
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
337
338
339
340
        metrics = trainer.evaluate(eval_dataset=eval_dataset)

        max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
341

342
343
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
VictorSanh's avatar
VictorSanh committed
344
345
346
347


if __name__ == "__main__":
    main()