"vscode:/vscode.git/clone" did not exist on "cad88e19de6c78f5434e0d0ed3f1575d58fc93b6"
test_tokenization_fast.py 24.1 KB
Newer Older
1
import unittest
Funtowicz Morgan's avatar
Funtowicz Morgan committed
2
3
from collections import namedtuple
from itertools import takewhile
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

from tests.utils import require_torch
from transformers import (
    BertTokenizer,
    BertTokenizerFast,
    DistilBertTokenizer,
    GPT2Tokenizer,
    GPT2TokenizerFast,
    OpenAIGPTTokenizer,
    PreTrainedTokenizer,
    RobertaTokenizer,
    TransfoXLTokenizer,
    is_torch_available,
)
from transformers.tokenization_distilbert import DistilBertTokenizerFast
from transformers.tokenization_openai import OpenAIGPTTokenizerFast
from transformers.tokenization_roberta import RobertaTokenizerFast
from transformers.tokenization_transfo_xl import TransfoXLTokenizerFast


Funtowicz Morgan's avatar
Funtowicz Morgan committed
24
25
26
NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"]
Tokenizer = namedtuple("Tokenizer", ["name", "rust_cls", "python_cls", "vocab_key", "filter"])

27

Funtowicz Morgan's avatar
Funtowicz Morgan committed
28
29
30
def filter_non_english(_: Tokenizer, pretrained_name: str):
    """ Filter all the model for non-english language """
    return not any([lang in pretrained_name for lang in NON_ENGLISH_TAGS])
31
32


Funtowicz Morgan's avatar
Funtowicz Morgan committed
33
34
def filter_roberta_detectors(_: Tokenizer, pretrained_name: str):
    return "detector" not in pretrained_name
35
36


Funtowicz Morgan's avatar
Funtowicz Morgan committed
37
class CommonFastTokenizerTest(unittest.TestCase):
38

Funtowicz Morgan's avatar
Funtowicz Morgan committed
39
40
41
42
43
    TOKENIZERS_CLASSES = frozenset([])

    def setUp(self) -> None:
        with open("tests/fixtures/sample_text.txt", encoding="utf-8") as f_data:
            self._data = f_data.read().replace("\n\n", "\n").strip()
44

Funtowicz Morgan's avatar
Funtowicz Morgan committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    def test_all_tokenizers(self):
        for tok_case in self.TOKENIZERS_CLASSES:
            for pretrained_name in tok_case.python_cls.pretrained_vocab_files_map[tok_case.vocab_key].keys():

                # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the
                # information available in Tokenizer (name, rust class, python class, vocab key name)
                if tok_case.filter is None or (
                    tok_case.filter is not None and tok_case.filter(tok_case, pretrained_name)
                ):
                    with self.subTest("{} ({})".format(tok_case.name, pretrained_name)):
                        tokenizer_r = tok_case.rust_cls.from_pretrained(pretrained_name)
                        tokenizer_p = tok_case.python_cls.from_pretrained(pretrained_name)

                        self.fast_align_python(tokenizer_r, tokenizer_p)
                        self.fast_only(tokenizer_r)

    def fast_align_python(self, tokenizer_r, tokenizer_p):
        # Check is_fast is set correctly
        self.assertFalse(tokenizer_p.is_fast)
        self.assertTrue(tokenizer_r.is_fast)

        # Check that Rust and Python align
        self.assert_tokenization_python_rust_equals(tokenizer_r, tokenizer_p)
        self.assert_num_special_tokens_to_add_equal(tokenizer_r, tokenizer_p)
        self.assert_max_length_equal(tokenizer_r, tokenizer_p)
        self.assert_special_tokens_map_equal(tokenizer_r, tokenizer_p)
        self.assert_embeded_special_tokens(tokenizer_r, tokenizer_p)
        self.assert_padding(tokenizer_r, tokenizer_p)
        # TODO: enable for v3.0.0
        # self.assert_empty_output_no_special_tokens(tokenizer_r, tokenizer_p)

    def fast_only(self, tokenizer_r):
        # Ensure None raise an error
        self.assertRaises(ValueError, tokenizer_r.tokenize, None)
        self.assertRaises(ValueError, tokenizer_r.encode, None)
        self.assertRaises(ValueError, tokenizer_r.encode_plus, None)
        self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, None)

        self.assert_add_tokens(tokenizer_r)
        self.assert_offsets_mapping(tokenizer_r)
        self.assert_add_special_tokens(tokenizer_r)

    def assert_tokenization_python_rust_equals(self, tokenizer_p, tokenizer_r):
88
89
90
91
92
        # Ensure basic input match
        input_p = tokenizer_p.encode_plus(self._data)
        input_r = tokenizer_r.encode_plus(self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
93
            self.assertSequenceEqual(input_p[key], input_r[key])
94
95
96
97
98

        input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
        input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
99
            self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])
100
101
102
103
104
105

        # Ensure truncation match
        input_p = tokenizer_p.encode_plus(self._data, max_length=512)
        input_r = tokenizer_r.encode_plus(self._data, max_length=512)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
106
            self.assertSequenceEqual(input_p[key], input_r[key])
107
108
109
110
111
112

        # Ensure truncation with stride match
        input_p = tokenizer_p.encode_plus(self._data, max_length=512, stride=3, return_overflowing_tokens=True)
        input_r = tokenizer_r.encode_plus(self._data, max_length=512, stride=3, return_overflowing_tokens=True)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
            self.assertSequenceEqual(input_p[key], input_r[key])

    def assert_num_special_tokens_to_add_equal(self, tokenizer_r, tokenizer_p):
        # Check we have the same number of added_tokens for both pair and non-pair inputs.
        self.assertEqual(tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False))
        self.assertEqual(tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True))

    def assert_max_length_equal(self, tokenizer_r, tokenizer_p):
        # Check we have the correct max_length for both pair and non-pair inputs.
        self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
        self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

    def assert_special_tokens_map_equal(self, tokenizer_r, tokenizer_p):
        # Assert the set of special tokens match.
        self.assertSequenceEqual(
            tokenizer_p.special_tokens_map.items(), tokenizer_r.special_tokens_map.items(),
129
130
        )

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    def assert_add_tokens(self, tokenizer_r):
        vocab_size = tokenizer_r.vocab_size
        self.assertEqual(tokenizer_r.add_tokens(""), 0)
        self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
        self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
        self.assertEqual(len(tokenizer_r), vocab_size + 3)

        self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
        self.assertRaises(
            AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
        )
        self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
        self.assertEqual(
            tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
        )
        self.assertEqual(len(tokenizer_r), vocab_size + 6)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
148
    def assert_offsets_mapping(self, tokenizer_r):
149
150
151
152
        text = "Wonderful no inspiration example with subtoken"
        pair = "Along with an awesome pair"

        # No pair
Funtowicz Morgan's avatar
Funtowicz Morgan committed
153
154
155
156
        tokens_with_offsets = tokenizer_r.encode_plus(
            text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
        )
        added_tokens = tokenizer_r.num_special_tokens_to_add(False)
157
158
159
160
161
162
163
164
165
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

        # Pairs
Funtowicz Morgan's avatar
Funtowicz Morgan committed
166
167
        tokens_with_offsets = tokenizer_r.encode_plus(
            text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
168
        )
Funtowicz Morgan's avatar
Funtowicz Morgan committed
169
        added_tokens = tokenizer_r.num_special_tokens_to_add(True)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

    def assert_batch_encode_dynamic_overflowing(self, tokenizer: PreTrainedTokenizer):
        """
        When calling batch_encode with multiple sequence it can returns different number of
        overflowing encoding for each sequence:
        [
          Sequence 1: [Encoding 1, Encoding 2],
          Sequence 2: [Encoding 1],
          Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
        ]
        This needs to be padded so that it can represented as a tensor
        """
        returned_tensor = "pt" if is_torch_available() else "tf"

        tokens = tokenizer.encode_plus(
            "HuggingFace is solving NLP one commit at a time",
            max_length=6,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)

        # Mono sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time"],
            max_length=6,
            pad_to_max_len=True,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

        # Multi sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
            max_length=6,
            pad_to_max_len=True,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    def assert_build_inputs_with_special_tokens(self, tokenizer_r, tokenizer_p):
        # Input string
        input_simple = tokenizer_p.tokenize("This is a sample input")
        input_pair = tokenizer_p.tokenize("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

        # Input tokens id
        input_simple = tokenizer_p.encode("This is a sample input")
        input_pair = tokenizer_p.encode("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
256
257
    def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15):
        def assert_padded_input_match(input_r: list, input_p: list, max_length: int):
258

Funtowicz Morgan's avatar
Funtowicz Morgan committed
259
260
            # Ensure we match max_length
            self.assertEqual(len(input_r), max_length), self.assertEqual(len(input_p), max_length)
261

Funtowicz Morgan's avatar
Funtowicz Morgan committed
262
263
264
265
            # Ensure the number of padded tokens is the same
            padded_tokens_r = list(takewhile(lambda i: i == tokenizer_r.pad_token_id, reversed(input_r)))
            padded_tokens_p = list(takewhile(lambda i: i == tokenizer_p.pad_token_id, reversed(input_p)))
            self.assertSequenceEqual(padded_tokens_r, padded_tokens_p)
266

Funtowicz Morgan's avatar
Funtowicz Morgan committed
267
268
269
270
        def assert_batch_padded_input_match(input_r: dict, input_p: dict):
            for i_r in input_r.values():
                self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), 15), self.assertEqual(len(i_r[1]), 15)
                self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), 15), self.assertEqual(len(i_r[1]), 15)
271

Funtowicz Morgan's avatar
Funtowicz Morgan committed
272
273
            for i_r, i_p in zip(input_r["input_ids"], input_p["input_ids"]):
                assert_padded_input_match(i_r, i_p, max_length)
274

Funtowicz Morgan's avatar
Funtowicz Morgan committed
275
276
            for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]):
                self.assertSequenceEqual(i_r, i_p)
277

Funtowicz Morgan's avatar
Funtowicz Morgan committed
278
279
280
281
        # Simple input
        input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
        input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
        assert_padded_input_match(input_r, input_p, max_length)
282

Funtowicz Morgan's avatar
Funtowicz Morgan committed
283
284
285
286
287
288
289
290
        # Pair input
        input_r = tokenizer_r.encode(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.encode(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        assert_padded_input_match(input_r, input_p, max_length)
291

Funtowicz Morgan's avatar
Funtowicz Morgan committed
292
293
294
295
296
        # Simple input
        input_r = tokenizer_r.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True)
        input_p = tokenizer_p.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True)
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
297

Funtowicz Morgan's avatar
Funtowicz Morgan committed
298
299
300
301
302
303
304
305
306
        # Pair input
        input_r = tokenizer_r.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
307

Funtowicz Morgan's avatar
Funtowicz Morgan committed
308
309
310
311
312
313
314
315
316
        # Simple input
        # TODO: Re-enable this test when batch_encode_plus with padding correctly handles padding
        input_r = tokenizer_r.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True
        )
        assert_batch_padded_input_match(input_r, input_p)
317

Funtowicz Morgan's avatar
Funtowicz Morgan committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        # Pair input
        # TODO: Re-enable this test when batch_encode_plus with padding correctly handles padding
        input_r = tokenizer_r.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
            max_length=15,
            pad_to_max_length=True,
        )
        input_p = tokenizer_p.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
            max_length=15,
            pad_to_max_length=True,
        )
        assert_batch_padded_input_match(input_r, input_p)
337

Funtowicz Morgan's avatar
Funtowicz Morgan committed
338
339
340
    def assert_save_pretrained(self, tokenizer_r, tokenizer_p):
        # Checks it save with the same files
        self.assertSequenceEqual(tokenizer_r.save_vocabulary("."), tokenizer_p.save_vocabulary("."))
341

Funtowicz Morgan's avatar
Funtowicz Morgan committed
342
343
        # Checks everything loads correctly in the same way
        tokenizer_rp, tokenizer_pp = tokenizer_r.from_pretrained("."), tokenizer_p.from_pretrained(".")
344

Funtowicz Morgan's avatar
Funtowicz Morgan committed
345
346
347
348
349
        # Check special tokens are set accordingly on Rust and Python
        for key in tokenizer_pp.special_tokens_map:
            self.assertTrue(hasattr(tokenizer_rp, key))
            # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
            # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
350

Funtowicz Morgan's avatar
Funtowicz Morgan committed
351
352
353
354
355
356
357
358
    def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p):
        sentence = "A, <mask> AllenNLP sentence."
        tokens_r = tokenizer_r.encode_plus(
            sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True
        )
        tokens_p = tokenizer_p.encode_plus(
            sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True
        )
359

Funtowicz Morgan's avatar
Funtowicz Morgan committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
        for key in tokens_p.keys():
            self.assertEqual(tokens_r[key], tokens_p[key])

        self.assertEqual(sum(tokens_r["token_type_ids"]), 0)
        self.assertEqual(sum(tokens_p["token_type_ids"]), 0)

        tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
        tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
        self.assertSequenceEqual(tokens_r, tokens_p)

    def assert_add_special_tokens(self, tokenizer_r):
        simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
        # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True)

        for text in ["", " "]:
            # tokenize()
            no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True)
            self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)

            # encode()
            no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True)
            self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)

            # encode_plus()
            no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True)
            for key in no_special_tokens.keys():
                self.assertEqual(
                    len(no_special_tokens[key]), len(with_special_tokens[key]) - simple_num_special_tokens_to_add
                )

            # # batch_encode_plus
            no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False)
            with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True)
            for key in no_special_tokens.keys():
                for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
                    self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)


class WordPieceFastTokenizerTest(CommonFastTokenizerTest):
    """
    Override all the specific methods to test WordPiece behavior
    """

    TOKENIZERS_CLASSES = frozenset(
        [
            Tokenizer("Bert", BertTokenizerFast, BertTokenizer, "vocab_file", filter_non_english),
            Tokenizer("DistilBert", DistilBertTokenizerFast, DistilBertTokenizer, "vocab_file", filter_non_english),
        ]
    )

    def fast_only(self, tokenizer_r):
        super().fast_only(tokenizer_r)
        self.assert_offsets_with_special_characters(tokenizer_r)

    def assert_add_special_tokens(self, tokenizer_r):
        super().assert_add_special_tokens(tokenizer_r)

    def assert_offsets_with_special_characters(self, tokenizer_r):
        sentence = "A, na茂ve [MASK] AllenNLP sentence."
        tokens = tokenizer_r.encode_plus(
            sentence,
            return_attention_mask=False,
            return_token_type_ids=False,
            return_offsets_mapping=True,
            add_special_tokens=True,
        )
429

Funtowicz Morgan's avatar
Funtowicz Morgan committed
430
431
432
433
434
435
436
437
438
439
440
        expected_results = [
            ((0, 1), "A"),
            ((1, 2), ","),
            ((3, 8), "naive"),  # BERT normalizes this away
            # Append MASK here after lower-casing
            ((16, 21), "Allen"),
            ((22, 24), "##NL"),
            ((24, 25), "##P"),
            ((26, 34), "sentence"),
            ((35, 36), "."),
        ]
441

Funtowicz Morgan's avatar
Funtowicz Morgan committed
442
443
444
        # Check if the tokenizer is uncased
        if tokenizer_r.init_kwargs.get("do_lower_case"):
            expected_results = [(offset, token.lower()) for (offset, token) in expected_results]
445

Funtowicz Morgan's avatar
Funtowicz Morgan committed
446
447
448
449
        # Append the special tokens
        expected_results.insert(3, ((9, 15), "[MASK]"))
        expected_results.insert(0, (None, "[CLS]"))
        expected_results.append((None, "[SEP]"))
450

Funtowicz Morgan's avatar
Funtowicz Morgan committed
451
452
        self.assertEqual([e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]))
        # self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
453
454


Funtowicz Morgan's avatar
Funtowicz Morgan committed
455
456
457
458
class RobertaFastTokenizerTest(CommonFastTokenizerTest):
    TOKENIZERS_CLASSES = frozenset(
        [Tokenizer("Roberta", RobertaTokenizerFast, RobertaTokenizer, "vocab_file", filter_roberta_detectors)]
    )
459

Funtowicz Morgan's avatar
Funtowicz Morgan committed
460
461
462
463
    def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p):
        sentence = "A, <mask> AllenNLP sentence."
        tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
        tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
464

Funtowicz Morgan's avatar
Funtowicz Morgan committed
465
466
467
        # Rust correctly handles the space before the mask while python doesnt
        self.assertSequenceEqual(tokens_r["input_ids"], [0, 83, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
        self.assertSequenceEqual(tokens_p["input_ids"], [0, 83, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
468

Funtowicz Morgan's avatar
Funtowicz Morgan committed
469
470
        # token_type_ids should put 0 everywhere
        self.assertEquals(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
471

Funtowicz Morgan's avatar
Funtowicz Morgan committed
472
473
474
475
476
        # attention_mask should put 1 everywhere, so sum over length should be 1
        self.assertEquals(
            sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
            sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
        )
477

Funtowicz Morgan's avatar
Funtowicz Morgan committed
478
479
480
        # Rust should have '臓' before <mask> which should be left as an entire token
        tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
        self.assertSequenceEqual(tokens_r, ["<s>", "臓A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"])
481

482

Funtowicz Morgan's avatar
Funtowicz Morgan committed
483
484
485
486
487
class NoPaddingTokenFastTokenizerMatchingTest(CommonFastTokenizerTest):
    TOKENIZERS_CLASSES = [
        Tokenizer("OpenAI GPT", OpenAIGPTTokenizerFast, OpenAIGPTTokenizer, "vocab_file", None),
        Tokenizer("GPT2", GPT2TokenizerFast, GPT2Tokenizer, "vocab_file", None),
    ]
488

Funtowicz Morgan's avatar
Funtowicz Morgan committed
489
490
491
492
493
494
495
496
497
    def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15):
        # Simple input
        s = "This is a simple input"
        s2 = ["This is a simple input 1", "This is a simple input 2"]
        p = ("This is a simple input", "This is a pair")
        p2 = [
            ("This is a simple input 1", "This is a simple input 2"),
            ("This is a simple pair 1", "This is a simple pair 2"),
        ]
498

Funtowicz Morgan's avatar
Funtowicz Morgan committed
499
500
        # Simple input tests
        self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, pad_to_max_length=True)
501

Funtowicz Morgan's avatar
Funtowicz Morgan committed
502
503
        # Simple input
        self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, pad_to_max_length=True)
504

Funtowicz Morgan's avatar
Funtowicz Morgan committed
505
506
        # Simple input
        self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, pad_to_max_length=True)
507

Funtowicz Morgan's avatar
Funtowicz Morgan committed
508
509
        # Pair input
        self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, pad_to_max_length=True)
510

Funtowicz Morgan's avatar
Funtowicz Morgan committed
511
512
        # Pair input
        self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, pad_to_max_length=True)
513

Funtowicz Morgan's avatar
Funtowicz Morgan committed
514
515
        # Pair input
        self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, pad_to_max_length=True)
516

517

Funtowicz Morgan's avatar
Funtowicz Morgan committed
518
519
520
521
class TransfoXLFastTokenizerTest(NoPaddingTokenFastTokenizerMatchingTest):
    TOKENIZERS_CLASSES = frozenset(
        [Tokenizer("TransfoXL", TransfoXLTokenizerFast, TransfoXLTokenizer, "pretrained_vocab_file", None)]
    )
522

Funtowicz Morgan's avatar
Funtowicz Morgan committed
523
524
525
    @require_torch
    def test_all_tokenizers(self):
        super().test_all_tokenizers()