convert_tf_checkpoint.py 2.88 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
# coding=utf-8
"""Convert BERT checkpoint."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re
import argparse
import tensorflow as tf
import torch
12
import numpy as np
thomwolf's avatar
thomwolf committed
13

thomwolf's avatar
thomwolf committed
14
from modeling_pytorch import BertConfig, BertModel
thomwolf's avatar
thomwolf committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

parser = argparse.ArgumentParser()

## Required parameters
parser.add_argument("--tf_checkpoint_path",
                    default = None,
                    type = str,
                    required = True,
                    help = "Path the TensorFlow checkpoint path.")
parser.add_argument("--bert_config_file",
                    default = None,
                    type = str,
                    required = True,
                    help = "The config json file corresponding to the pre-trained BERT model. \n"
                        "This specifies the model architecture.")
parser.add_argument("--pytorch_dump_path",
                    default = None,
                    type = str,
                    required = True,
                    help = "Path to the output PyTorch model.")

args = parser.parse_args()

def convert():
thomwolf's avatar
thomwolf committed
39
40
41
42
    # Initialise PyTorch model
    config = BertConfig.from_json_file(args.bert_config_file)
    model = BertModel(config)

thomwolf's avatar
thomwolf committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    # Load weights from TF model
    path = args.tf_checkpoint_path
    print("Converting TensorFlow checkpoint from {}".format(path))

    init_vars = tf.train.list_variables(path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading {} with shape {}".format(name, shape))
        array = tf.train.load_variable(path, name)
        print("Numpy array shape {}".format(array.shape))
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name[5:]  # skip "bert/"
59
        print("Loading {}".format(name))
thomwolf's avatar
thomwolf committed
60
        name = name.split('/')
61
62
63
        if name[0] in ['redictions', 'eq_relationship']:
            print("Skipping")
            continue
thomwolf's avatar
thomwolf committed
64
65
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
66
67
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
thomwolf's avatar
thomwolf committed
68
69
            else:
                l = [m_name]
thomwolf's avatar
thomwolf committed
70
71
72
73
            if l[0] == 'kernel':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
thomwolf's avatar
thomwolf committed
74
75
76
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
thomwolf's avatar
thomwolf committed
77
78
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
79
80
        elif m_name == 'kernel':
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
81
82
83
84
85
86
87
88
89
90
91
92
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        pointer.data = torch.from_numpy(array)

    # Save pytorch-model
    torch.save(model.state_dict(), args.pytorch_dump_path)

if __name__ == "__main__":
    convert()