convert_tf_checkpoint.py 2.73 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
# coding=utf-8
"""Convert BERT checkpoint."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re
import argparse
import tensorflow as tf
import torch

thomwolf's avatar
thomwolf committed
13
from modeling_pytorch import BertConfig, BertModel
thomwolf's avatar
thomwolf committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

parser = argparse.ArgumentParser()

## Required parameters
parser.add_argument("--tf_checkpoint_path",
                    default = None,
                    type = str,
                    required = True,
                    help = "Path the TensorFlow checkpoint path.")
parser.add_argument("--bert_config_file",
                    default = None,
                    type = str,
                    required = True,
                    help = "The config json file corresponding to the pre-trained BERT model. \n"
                        "This specifies the model architecture.")
parser.add_argument("--pytorch_dump_path",
                    default = None,
                    type = str,
                    required = True,
                    help = "Path to the output PyTorch model.")

args = parser.parse_args()

def convert():
thomwolf's avatar
thomwolf committed
38
39
40
41
    # Initialise PyTorch model
    config = BertConfig.from_json_file(args.bert_config_file)
    model = BertModel(config)

thomwolf's avatar
thomwolf committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    # Load weights from TF model
    path = args.tf_checkpoint_path
    print("Converting TensorFlow checkpoint from {}".format(path))

    init_vars = tf.train.list_variables(path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading {} with shape {}".format(name, shape))
        array = tf.train.load_variable(path, name)
        print("Numpy array shape {}".format(array.shape))
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name[5:]  # skip "bert/"
        name = name.split('/')
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
61
62
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
thomwolf's avatar
thomwolf committed
63
64
            else:
                l = [m_name]
thomwolf's avatar
thomwolf committed
65
66
67
68
            if l[0] == 'kernel':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
thomwolf's avatar
thomwolf committed
69
70
71
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
thomwolf's avatar
thomwolf committed
72
73
74
75
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        # elif m_name == 'kernel':
        #     pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
76
77
78
79
80
81
82
83
84
85
86
87
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        pointer.data = torch.from_numpy(array)

    # Save pytorch-model
    torch.save(model.state_dict(), args.pytorch_dump_path)

if __name__ == "__main__":
    convert()