"tests/vscode:/vscode.git/clone" did not exist on "96783e53b426d36b5c6a1fad1771fd54e38bd7e0"
run_summarization.py 32.3 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for summarization.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

Matt's avatar
Matt committed
21
import json
Matt's avatar
Matt committed
22
23
24
import logging
import os
import sys
25
import warnings
Matt's avatar
Matt committed
26
27
28
29
from dataclasses import dataclass, field
from typing import Optional

import datasets
30
import evaluate
Matt's avatar
Matt committed
31
32
33
import nltk  # Here to have a nice missing dependency error message early on
import numpy as np
import tensorflow as tf
34
from datasets import load_dataset
35
from filelock import FileLock
Matt's avatar
Matt committed
36
37
38
39
40

import transformers
from transformers import (
    AutoConfig,
    AutoTokenizer,
Matt's avatar
Matt committed
41
    DataCollatorForSeq2Seq,
Matt's avatar
Matt committed
42
    HfArgumentParser,
Matt's avatar
Matt committed
43
44
    KerasMetricCallback,
    PushToHubCallback,
Matt's avatar
Matt committed
45
46
47
48
49
50
    TFAutoModelForSeq2SeqLM,
    TFTrainingArguments,
    create_optimizer,
    set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
51
from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry
Matt's avatar
Matt committed
52
53
54
55
56
from transformers.utils.versions import require_version


# region Checking dependencies
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
57
check_min_version("4.37.0.dev0")
Matt's avatar
Matt committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

logger = logging.getLogger(__name__)

try:
    nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
    if is_offline_mode():
        raise LookupError(
            "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
        )
    with FileLock(".lock") as lock:
        nltk.download("punkt", quiet=True)
# endregion


# region Arguments
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
103
104
    token: str = field(
        default=None,
Matt's avatar
Matt committed
105
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
106
            "help": (
107
108
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
109
            )
Matt's avatar
Matt committed
110
111
        },
    )
112
113
114
    use_auth_token: bool = field(
        default=None,
        metadata={
115
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
116
117
        },
    )
118
119
120
121
122
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
123
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
124
125
126
127
                "execute code present on the Hub on your local machine."
            )
        },
    )
Matt's avatar
Matt committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    summary_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
    validation_file: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
156
157
158
            "help": (
                "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
            )
Matt's avatar
Matt committed
159
160
161
162
163
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
164
            "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
Matt's avatar
Matt committed
165
166
167
168
169
170
171
172
173
174
175
176
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
177
178
179
180
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Matt's avatar
Matt committed
181
182
183
184
185
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
186
187
188
189
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Matt's avatar
Matt committed
190
191
192
193
194
        },
    )
    val_max_target_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
195
196
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
197
                "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
Sylvain Gugger's avatar
Sylvain Gugger committed
198
199
200
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
Matt's avatar
Matt committed
201
202
203
204
205
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
209
210
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
Matt's avatar
Matt committed
211
212
213
214
215
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
216
217
218
219
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
220
221
222
223
224
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
225
226
227
228
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
229
230
231
232
233
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
234
235
236
237
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
238
239
240
        },
    )
    num_beams: Optional[int] = field(
241
        default=1,
Matt's avatar
Matt committed
242
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
243
244
245
246
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
                "which is used during ``evaluate`` and ``predict``."
            )
Matt's avatar
Matt committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        },
    )
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length


# endregion

# region Dataset name mappings
summarization_name_mapping = {
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
    "cnn_dailymail": ("article", "highlights"),
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
    "xsum": ("document", "summary"),
    "wiki_summary": ("article", "highlights"),
288
    "multi_news": ("document", "summary"),
Matt's avatar
Matt committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
}
# endregion


def main():
    # region Argument parsing
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
306

307
    if model_args.use_auth_token is not None:
308
309
310
311
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
312
313
314
315
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

316
317
318
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_summarization", model_args, data_args, framework="tensorflow")
Matt's avatar
Matt committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    # endregion

    # region Logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO)
    datasets.utils.logging.set_verbosity(logging.INFO)
    transformers.utils.logging.set_verbosity(logging.INFO)

    # Log on each process the small summary:
    logger.info(f"Training/evaluation parameters {training_args}")
    # endregion

    # region T5 special-casing
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )
    # endregion

    # region Detecting last checkpoint
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
    # endregion

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # region Load datasets
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
381
382
383
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
384
            token=model_args.token,
Matt's avatar
Matt committed
385
386
387
388
389
390
391
392
393
394
395
396
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
397
398
399
400
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
401
            token=model_args.token,
402
        )
Matt's avatar
Matt committed
403
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
404
    # https://huggingface.co/docs/datasets/loading_datasets.
Matt's avatar
Matt committed
405
406
407
408
409
410
411
412
413
414
415
416
    # endregion

    # region Load model config and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
417
        token=model_args.token,
418
        trust_remote_code=model_args.trust_remote_code,
Matt's avatar
Matt committed
419
420
421
422
423
424
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
425
        token=model_args.token,
426
        trust_remote_code=model_args.trust_remote_code,
Matt's avatar
Matt committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    )

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
    # endregion

    # region Dataset preprocessing
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, and/or `do_eval`.")
        return

    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

    def preprocess_function(examples):
        inputs = examples[text_column]
        targets = examples[summary_column]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

471
472
        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
Matt's avatar
Matt committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
489
490
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
491
492
493
494
495
496
497
498
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on train dataset",
        )
Matt's avatar
Matt committed
499
500
501
502
503
504
505
506
507
    else:
        train_dataset = None

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
508
509
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
510
511
512
513
514
515
516
517
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on validation dataset",
        )
Matt's avatar
Matt committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    else:
        eval_dataset = None
    # endregion

    # region Text preprocessing
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]

        return preds, labels

    # endregion

    with training_args.strategy.scope():
        # region Prepare model
        model = TFAutoModelForSeq2SeqLM.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
542
            token=model_args.token,
543
            trust_remote_code=model_args.trust_remote_code,
Matt's avatar
Matt committed
544
545
        )

546
547
        # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
        # on a small vocab and want a smaller embedding size, remove this test.
548
549
550
551
552
553
554
555
556
        embeddings = model.get_input_embeddings()

        # Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
        #       As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
        #       the weights will always be in embeddings.embeddings.
        if hasattr(embeddings, "embeddings"):
            embedding_size = embeddings.embeddings.shape[0]
        else:
            embedding_size = embeddings.weight.shape[0]
557
558
        if len(tokenizer) > embedding_size:
            model.resize_token_embeddings(len(tokenizer))
Matt's avatar
Matt committed
559
560
561
562
563
564
        # endregion

        # region Prepare TF Dataset objects
        if model.config.decoder_start_token_id is None:
            raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

Matt's avatar
Matt committed
565
566
567
568
569
570
        label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            model=model,
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=128,  # Reduce the number of unique shapes for XLA, especially for generation
571
            return_tensors="np",
Matt's avatar
Matt committed
572
573
574
575
576
        )

        dataset_options = tf.data.Options()
        dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF

Matt's avatar
Matt committed
577
578
579
        num_replicas = training_args.strategy.num_replicas_in_sync
        total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
        total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
Matt's avatar
Matt committed
580
581
582
583
584
585
586
587
588
589
590

        # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
        # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
        # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
        # yourself if you use this method, whereas they are automatically inferred from the model input names when
        # using model.prepare_tf_dataset()
        # For more info see the docs:
        # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
        # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset

        tf_train_dataset = model.prepare_tf_dataset(
Matt's avatar
Matt committed
591
            train_dataset,
Matt's avatar
Matt committed
592
593
            collate_fn=data_collator,
            batch_size=total_train_batch_size,
Matt's avatar
Matt committed
594
            shuffle=True,
Matt's avatar
Matt committed
595
596
        ).with_options(dataset_options)
        tf_eval_dataset = model.prepare_tf_dataset(
Matt's avatar
Matt committed
597
            eval_dataset,
Matt's avatar
Matt committed
598
599
            collate_fn=data_collator,
            batch_size=total_eval_batch_size,
Matt's avatar
Matt committed
600
            shuffle=False,
Matt's avatar
Matt committed
601
        ).with_options(dataset_options)
Matt's avatar
Matt committed
602
603
604
        # endregion

        # region Optimizer, loss and LR scheduling
Matt's avatar
Matt committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
        num_train_steps = int(len(tf_train_dataset) * training_args.num_train_epochs)
        if training_args.warmup_steps > 0:
            num_warmup_steps = training_args.warmup_steps
        elif training_args.warmup_ratio > 0:
            num_warmup_steps = int(num_train_steps * training_args.warmup_ratio)
        else:
            num_warmup_steps = 0
        if training_args.do_train:
            optimizer, lr_schedule = create_optimizer(
                init_lr=training_args.learning_rate,
                num_train_steps=num_train_steps,
                num_warmup_steps=num_warmup_steps,
                adam_beta1=training_args.adam_beta1,
                adam_beta2=training_args.adam_beta2,
                adam_epsilon=training_args.adam_epsilon,
                weight_decay_rate=training_args.weight_decay,
                adam_global_clipnorm=training_args.max_grad_norm,
Matt's avatar
Matt committed
622
            )
Matt's avatar
Matt committed
623
624
625
626
        else:
            optimizer = None

        # endregion
Matt's avatar
Matt committed
627

Matt's avatar
Matt committed
628
629
        # region Metric and KerasMetricCallback
        if training_args.do_eval:
630
            metric = evaluate.load("rouge", cache_dir=model_args.cache_dir)
Matt's avatar
Matt committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

            if data_args.val_max_target_length is None:
                data_args.val_max_target_length = data_args.max_target_length

            gen_kwargs = {
                "max_length": data_args.val_max_target_length if data_args is not None else config.max_length,
                "num_beams": data_args.num_beams,
                "no_repeat_ngram_size": 0,  # Not supported under XLA right now, and some models set it by default
            }

            def compute_metrics(preds):
                predictions, labels = preds
                if isinstance(predictions, tuple):
                    predictions = predictions[0]
                decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
                labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
                decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
                decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
                metrics = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
                # Only print the mid f-measures, but there are a lot of other statistics in there too!
                metrics = {key: round(val.mid.fmeasure * 100, 4) for key, val in metrics.items()}
                return metrics

            # The KerasMetricCallback allows metrics that are too complex to write as standard Keras metrics
            # to be computed each epoch. Any Python code can be included in the metric_fn. This is especially
            # useful for metrics like BLEU and ROUGE that perform string comparisons on decoded model outputs.
            # For more information, see the docs at
            # https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.KerasMetricCallback

            metric_callback = KerasMetricCallback(
                metric_fn=compute_metrics,
                eval_dataset=tf_eval_dataset,
                predict_with_generate=True,
                use_xla_generation=True,
                generate_kwargs=gen_kwargs,
            )
            callbacks = [metric_callback]
        else:
            callbacks = []
Matt's avatar
Matt committed
670
671
        # endregion

Matt's avatar
Matt committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
        # region Preparing push_to_hub and model card
        push_to_hub_model_id = training_args.push_to_hub_model_id
        model_name = model_args.model_name_or_path.split("/")[-1]
        if not push_to_hub_model_id:
            if data_args.dataset_name is not None:
                push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}"
            else:
                push_to_hub_model_id = f"{model_name}-finetuned-summarization"

        model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
        if data_args.dataset_name is not None:
            model_card_kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                model_card_kwargs["dataset_args"] = data_args.dataset_config_name
                model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                model_card_kwargs["dataset"] = data_args.dataset_name

        if training_args.push_to_hub:
            # Because this training can be quite long, we save once per epoch.
            callbacks.append(
                PushToHubCallback(
                    output_dir=training_args.output_dir,
695
696
                    hub_model_id=push_to_hub_model_id,
                    hub_token=training_args.push_to_hub_token,
Matt's avatar
Matt committed
697
698
699
700
                    tokenizer=tokenizer,
                    **model_card_kwargs,
                )
            )
Matt's avatar
Matt committed
701
702
703
        # endregion

        # region Training
704
705
        # Transformers models compute the right loss for their task by default when labels are passed, and will
        # use this for training unless you specify your own loss function in compile().
Matt's avatar
Matt committed
706
707
        model.compile(optimizer=optimizer, jit_compile=training_args.xla)
        eval_metrics = None
Matt's avatar
Matt committed
708
709
710
711
712
713
714
715
        if training_args.do_train:
            logger.info("***** Running training *****")
            logger.info(f"  Num examples = {len(train_dataset)}")
            logger.info(f"  Num Epochs = {training_args.num_train_epochs}")
            logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
            logger.info(f"  Total train batch size = {total_train_batch_size}")
            logger.info(f"  Total optimization steps = {num_train_steps}")

Matt's avatar
Matt committed
716
717
718
719
720
721
722
            if training_args.xla and not data_args.pad_to_max_length:
                logger.warning(
                    "XLA training may be slow at first when --pad_to_max_length is not set "
                    "until all possible shapes have been compiled."
                )
            history = model.fit(tf_train_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks)
            eval_metrics = {key: val[-1] for key, val in history.history.items()}
Matt's avatar
Matt committed
723
724
725
726
        # endregion

        # region Validation

Matt's avatar
Matt committed
727
728
        if training_args.do_eval and not training_args.do_train:
            # Do a standalone evaluation run
Matt's avatar
Matt committed
729
            logger.info("Evaluation...")
Matt's avatar
Matt committed
730
731
732
733
734
735
736

            # Compiling generation with XLA yields enormous speedups, see https://huggingface.co/blog/tf-xla-generate
            @tf.function(jit_compile=True)
            def generate(**kwargs):
                return model.generate(**kwargs)

            for batch, labels in tf_eval_dataset:
Matt's avatar
Matt committed
737
                batch.update(gen_kwargs)
Matt's avatar
Matt committed
738
                generated_tokens = generate(**batch)
Matt's avatar
Matt committed
739
740
741
742
743
744
745
746
747
                if isinstance(generated_tokens, tuple):
                    generated_tokens = generated_tokens[0]
                decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
                decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
                decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

                metric.add_batch(predictions=decoded_preds, references=decoded_labels)

Matt's avatar
Matt committed
748
            eval_metrics = metric.compute(use_stemmer=True)
Matt's avatar
Matt committed
749

Matt's avatar
Matt committed
750
            result = {key: round(val.mid.fmeasure * 100, 4) for key, val in eval_metrics.items()}
Matt's avatar
Matt committed
751
752
753
            logger.info(result)
        # endregion

Matt's avatar
Matt committed
754
755
756
757
758
759
760
        if training_args.output_dir is not None and eval_metrics is not None:
            output_eval_file = os.path.join(training_args.output_dir, "all_results.json")
            with open(output_eval_file, "w") as writer:
                writer.write(json.dumps(eval_metrics))

        if training_args.output_dir is not None and not training_args.push_to_hub:
            # If we're not pushing to hub, at least save a local copy when we're done
Matt's avatar
Matt committed
761
762
763
764
765
            model.save_pretrained(training_args.output_dir)


if __name__ == "__main__":
    main()