run_summarization.py 27.7 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for summarization.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from functools import partial
from typing import Optional

import datasets
import nltk  # Here to have a nice missing dependency error message early on
import numpy as np
import tensorflow as tf
from datasets import load_dataset, load_metric
from tqdm import tqdm

import transformers
from filelock import FileLock
from transformers import (
    AutoConfig,
    AutoTokenizer,
    HfArgumentParser,
    TFAutoModelForSeq2SeqLM,
    TFTrainingArguments,
    create_optimizer,
    set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
47
from transformers.utils import check_min_version, is_offline_mode
Matt's avatar
Matt committed
48
49
50
51
52
from transformers.utils.versions import require_version


# region Checking dependencies
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
53
check_min_version("4.20.0.dev0")
Matt's avatar
Matt committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

logger = logging.getLogger(__name__)

try:
    nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
    if is_offline_mode():
        raise LookupError(
            "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
        )
    with FileLock(".lock") as lock:
        nltk.download("punkt", quiet=True)
# endregion


# region Arguments
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
102
103
104
105
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
Matt's avatar
Matt committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        },
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    summary_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
    validation_file: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
136
137
138
            "help": (
                "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
            )
Matt's avatar
Matt committed
139
140
141
142
143
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
144
            "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
Matt's avatar
Matt committed
145
146
147
148
149
150
151
152
153
154
155
156
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
159
160
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Matt's avatar
Matt committed
161
162
163
164
165
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
166
167
168
169
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Matt's avatar
Matt committed
170
171
172
173
174
        },
    )
    val_max_target_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
175
176
177
178
179
180
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
Matt's avatar
Matt committed
181
182
183
184
185
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
186
187
188
189
190
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
Matt's avatar
Matt committed
191
192
193
194
195
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
196
197
198
199
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
200
201
202
203
204
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
205
206
207
208
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
209
210
211
212
213
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
214
215
216
217
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
218
219
220
221
222
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
223
224
225
226
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
                "which is used during ``evaluate`` and ``predict``."
            )
Matt's avatar
Matt committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        },
    )
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length


# endregion


# region Dataset name mappings
summarization_name_mapping = {
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
    "cnn_dailymail": ("article", "highlights"),
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
    "xsum": ("document", "summary"),
    "wiki_summary": ("article", "highlights"),
}
# endregion


# region Data generator
def sample_generator(dataset, model, tokenizer, shuffle, pad_to_multiple_of=None):
    if shuffle:
        sample_ordering = np.random.permutation(len(dataset))
    else:
        sample_ordering = np.arange(len(dataset))
    for sample_idx in sample_ordering:
        example = dataset[int(sample_idx)]
        # Handle dicts with proper padding and conversion to tensor.
        example = tokenizer.pad(example, return_tensors="np", pad_to_multiple_of=pad_to_multiple_of)
        example = {key: tf.convert_to_tensor(arr, dtype_hint=tf.int32) for key, arr in example.items()}
        if model is not None and hasattr(model, "prepare_decoder_input_ids_from_labels"):
            decoder_input_ids = model.prepare_decoder_input_ids_from_labels(
                labels=tf.expand_dims(example["labels"], 0)
            )
            example["decoder_input_ids"] = tf.squeeze(decoder_input_ids, 0)
        yield example, example["labels"]  # TF needs some kind of labels, even if we don't use them
    return


# endregion


# region Helper functions
def dataset_to_tf(dataset, model, tokenizer, total_batch_size, num_epochs, shuffle):
    if dataset is None:
        return None
    train_generator = partial(sample_generator, dataset, model, tokenizer, shuffle=shuffle)
    train_signature = {
        feature: tf.TensorSpec(shape=(None,), dtype=tf.int32)
        for feature in dataset.features
        if feature != "special_tokens_mask"
    }
    if (
        model is not None
        and "decoder_input_ids" not in train_signature
        and hasattr(model, "prepare_decoder_input_ids_from_labels")
    ):
        train_signature["decoder_input_ids"] = train_signature["labels"]
    # This may need to be changed depending on your particular model or tokenizer!
    padding_values = {
        key: tf.convert_to_tensor(tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0, dtype=tf.int32)
        for key in train_signature.keys()
    }
    padding_values["labels"] = tf.convert_to_tensor(-100, dtype=tf.int32)
    train_signature["labels"] = train_signature["input_ids"]
    train_signature = (train_signature, train_signature["labels"])
    options = tf.data.Options()
    options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
    tf_dataset = (
        tf.data.Dataset.from_generator(train_generator, output_signature=train_signature)
        .with_options(options)
        .padded_batch(
            batch_size=total_batch_size,
            drop_remainder=True,
            padding_values=(padding_values, np.array(-100, dtype=np.int32)),
        )
        .repeat(int(num_epochs))
    )
    return tf_dataset


# endregion


def main():
    # region Argument parsing
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    # endregion

    # region Logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO)
    datasets.utils.logging.set_verbosity(logging.INFO)
    transformers.utils.logging.set_verbosity(logging.INFO)

    # Log on each process the small summary:
    logger.info(f"Training/evaluation parameters {training_args}")
    # endregion

    # region T5 special-casing
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )
    # endregion

    # region Detecting last checkpoint
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
    # endregion

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # region Load datasets
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
413
414
415
416
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
Matt's avatar
Matt committed
417
418
419
420
421
422
423
424
425
426
427
428
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
429
430
431
432
433
434
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
Matt's avatar
Matt committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.
    # endregion

    # region Load model config and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
    # endregion

    # region Dataset preprocessing
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, and/or `do_eval`.")
        return

    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

    def preprocess_function(examples):
        inputs = examples[text_column]
        targets = examples[summary_column]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
520
521
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Matt's avatar
Matt committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
    else:
        train_dataset = None

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
540
541
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
Matt's avatar
Matt committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
    else:
        eval_dataset = None
    # endregion

    # region Text preprocessing
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]

        return preds, labels

    # endregion

    with training_args.strategy.scope():
        # region Prepare model
        model = TFAutoModelForSeq2SeqLM.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

        model.resize_token_embeddings(len(tokenizer))
        # endregion

        # region Prepare TF Dataset objects
        if model.config.decoder_start_token_id is None:
            raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

        num_replicas = training_args.strategy.num_replicas_in_sync
        total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
        total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
        tf_train_dataset = dataset_to_tf(
            train_dataset,
            model,
            tokenizer,
            total_batch_size=total_train_batch_size,
            num_epochs=training_args.num_train_epochs,
            shuffle=True,
        )
        tf_eval_dataset = dataset_to_tf(
            eval_dataset,
            model,
            tokenizer,
            total_eval_batch_size,
            num_epochs=1,
            shuffle=False,
        )
        # endregion

        # region Optimizer, loss and LR scheduling
        # Scheduler and math around the number of training steps.
608
        num_update_steps_per_epoch = len(train_dataset) // total_train_batch_size
Matt's avatar
Matt committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        num_train_steps = training_args.num_train_epochs * num_update_steps_per_epoch
        optimizer, lr_schedule = create_optimizer(
            init_lr=training_args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=0
        )

        def masked_sparse_categorical_crossentropy(y_true, y_pred):
            # We clip the negative labels to 0 to avoid NaNs appearing in the output and
            # fouling up everything that comes afterwards. The loss values corresponding to clipped values
            # will be masked later anyway, but even masked NaNs seem to cause overflows for some reason.
            # 1e6 is chosen as a reasonable upper bound for the number of token indices - in the unlikely
            # event that you have more than 1 million tokens in your vocabulary, consider increasing this value.
            # More pragmatically, consider redesigning your tokenizer.
            losses = tf.keras.losses.sparse_categorical_crossentropy(
                tf.clip_by_value(y_true, 0, int(1e6)), y_pred, from_logits=True
            )
            # Compute the per-sample loss only over the unmasked tokens
            losses = tf.ragged.boolean_mask(losses, y_true != -100)
            losses = tf.reduce_mean(losses, axis=-1)
            return losses

        # endregion

        # region Metric
        metric = load_metric("rouge")
        # endregion

        # region Training
        model.compile(loss={"logits": masked_sparse_categorical_crossentropy}, optimizer=optimizer)

        if training_args.do_train:
            logger.info("***** Running training *****")
            logger.info(f"  Num examples = {len(train_dataset)}")
            logger.info(f"  Num Epochs = {training_args.num_train_epochs}")
            logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
            logger.info(f"  Total train batch size = {total_train_batch_size}")
            logger.info(f"  Total optimization steps = {num_train_steps}")

            model.fit(
                tf_train_dataset,
                epochs=int(training_args.num_train_epochs),
                steps_per_epoch=num_update_steps_per_epoch,
            )
        # endregion

        # region Validation
        if data_args.val_max_target_length is None:
            data_args.val_max_target_length = data_args.max_target_length

        gen_kwargs = {
            "max_length": data_args.val_max_target_length if data_args is not None else config.max_length,
            "num_beams": data_args.num_beams,
        }
        if training_args.do_eval:
            logger.info("Evaluation...")
            for batch, labels in tqdm(
                tf_eval_dataset, total=len(eval_dataset) // training_args.per_device_eval_batch_size
            ):
                batch.update(gen_kwargs)
                generated_tokens = model.generate(**batch)
                if isinstance(generated_tokens, tuple):
                    generated_tokens = generated_tokens[0]
                decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
                decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
                decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

                metric.add_batch(predictions=decoded_preds, references=decoded_labels)

            result = metric.compute(use_stemmer=True)
            # Extract a few results from ROUGE
            result = {key: value.mid.fmeasure * 100 for key, value in result.items()}

            result = {k: round(v, 4) for k, v in result.items()}

            logger.info(result)
        # endregion

        if training_args.output_dir is not None:
            model.save_pretrained(training_args.output_dir)


if __name__ == "__main__":
    main()