test_model_zoo.py 12.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
import os
import subprocess
18
from os.path import dirname
19
20

from parameterized import parameterized
21

Stas Bekman's avatar
Stas Bekman committed
22
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
23
24
25
from transformers import is_torch_available
from transformers.testing_utils import (
    TestCasePlus,
26
    backend_device_count,
27
    execute_subprocess_async,
Yih-Dar's avatar
Yih-Dar committed
28
    get_tests_dir,
29
    require_deepspeed,
30
    require_torch_accelerator,
31
    slow,
32
    torch_device,
33
34
35
36
)
from transformers.trainer_utils import set_seed


37
if is_torch_available():
Stas Bekman's avatar
Stas Bekman committed
38
39
40
41
42
    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
        get_regression_trainer,
    )
43
44
45
46


set_seed(42)

47
48
49
50
FIXTURE_DIRECTORY = get_tests_dir("fixtures")
ROOT_DIRECTORY = os.path.join(dirname(get_tests_dir()))
DS_TESTS_DIRECTORY = dirname(os.path.abspath(__file__))

51
52
53
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

54
T5_SMALL = "google-t5/t5-small"
55

56
57
58
59
60
61
62
# *** Working Models ***
ALBERT_TINY = "hf-internal-testing/tiny-albert"
BART_TINY = "sshleifer/bart-tiny-random"
BERT_TINY = "hf-internal-testing/tiny-bert"
BIGBIRD_PEGASUS_TINY = "hf-internal-testing/tiny-random-bigbird_pegasus"
BIG_BIRD_TINY = "hf-internal-testing/tiny-random-big_bird"
BLENDERBOT_TINY = "hf-internal-testing/tiny-random-blenderbot"
Younes Belkada's avatar
Younes Belkada committed
63
BLOOM_TINY = "bigscience/bigscience-small-testing"
64
65
66
67
68
69
70
DEBERTA_TINY = "hf-internal-testing/tiny-random-deberta"
DEBERTA_V2_TINY = "hf-internal-testing/tiny-random-deberta-v2"
DISTILBERT_TINY = "sshleifer/tiny-distilbert-base-cased"
ELECTRA_TINY = "hf-internal-testing/tiny-electra"
FLAUBERT_TINY = "hf-internal-testing/tiny-random-flaubert"
FSMT_TINY = "stas/tiny-wmt19-en-de"
FUNNEL_TINY = "hf-internal-testing/tiny-random-funnel"
71
GPT2_TINY = "sshleifer/tiny-gpt2"
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
GPTJ_TINY = "hf-internal-testing/tiny-random-gptj"
GPT_NEO_TINY = "hf-internal-testing/tiny-random-gpt_neo"
LAYOUTLM_TINY = "hf-internal-testing/tiny-layoutlm"
LED_TINY = "hf-internal-testing/tiny-random-led"
LONGFORMER_TINY = "hf-internal-testing/tiny-random-longformer"
M2M_100_TINY = "stas/tiny-m2m_100"  # hf tiny model is unsuitable
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
MBART_TINY = "sshleifer/tiny-mbart"
MOBILEBERT_TINY = "hf-internal-testing/tiny-random-mobilebert"
MPNET_TINY = "hf-internal-testing/tiny-random-mpnet"
PEGASUS_TINY = "stas/pegasus-cnn_dailymail-tiny-random"
PROPHETNET_TINY = "hf-internal-testing/tiny-random-prophetnet"
ROBERTA_TINY = "sshleifer/tiny-distilroberta-base"
SQUEEZEBERT_TINY = "hf-internal-testing/tiny-random-squeezebert"
T5_TINY = "patrickvonplaten/t5-tiny-random"
T5_V1_TINY = "hf-internal-testing/tiny-random-t5-v1.1"
VIT_TINY = "hf-internal-testing/tiny-random-vit"
89
XLM_ROBERTA_TINY = "hf-internal-testing/tiny-xlm-roberta"
90
XLNET_TINY = "sshleifer/tiny-xlnet-base-cased"
91
92


93
# *** To Fix ***
94
95


96
97
98
99
100
101
102
103
104
105
106
107
108
# *** tiny model issues ***
# missing model files:
MT5_TINY = "hf-internal-testing/tiny-random-mt5"
CAMEMBERT_TINY = "hf-internal-testing/tiny-random-camembert"
OPENAI_GPT_TINY = "hf-internal-testing/tiny-random-openai-gpt"

# missing tokenizer files
CONVBERT_TINY = "hf-internal-testing/tiny-random-convbert"
LAYOUTLMV2_TINY = "hf-internal-testing/tiny-random-layoutlmv2"
HUBERT_TINY = "hf-internal-testing/tiny-random-hubert"

# issues with tokenizer
CTRL_TINY = "hf-internal-testing/tiny-random-ctrl"
109
TRANSFO_XL_TINY = "hf-internal-testing/tiny-random-transfo-xl"  # same as Salesforce/ctrl
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# other issues with tiny models
IBERT_TINY = "hf-internal-testing/tiny-random-ibert"  # multiple issues with either mlm/qa/clas
REFORMER_TINY = "hf-internal-testing/tiny-random-reformer"  # multiple issues with either mlm/qa/clas

# *** Lacking official examples to test with ***
# or not working with examples
DPR_TINY = "hf-internal-testing/tiny-random-dpr"
# - "dpr"  examples/research_projects/rag-end2end-retriever/
RAG_TINY = "hf-internal-testing/tiny-random-rag"
# - "rag" research_projects
LUKE_TINY = ""
# - "luke" Entities classes - no plan to make such example
LXMERT_TINY = "hf-internal-testing/tiny-random-lxmert"
# - "lxmert" doesn't work with run_qa.py
CLIP_TINY = "hf-internal-testing/tiny-random-clip"
# - "clip" nothing under pytorch examples - XXX: Suraj is working on adding some - check by end of Sep
SPEECH_TO_TEXT_TINY = "hf-internal-testing/tiny-random-speech_to_text"
# - "speech_to_text", nothing under pytorch examples


# *** Reactive mode ***
# models with low usage, unstable API, things about to change - do nothing about the following until someone runs into a problem
TAPAS_TINY = "hf-internal-testing/tiny-random-tapas"
# additional notes on tapas
135
# 1. "Table must be of type pd.DataFrame" failure
136
137
138
139


# TODO: new models to add:
#
140
141
142
143
144
145
146


def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
147
    num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1
148
149
    master_port = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
150
151
152


def make_task_cmds():
153
    data_dir_samples = f"{FIXTURE_DIRECTORY}/tests_samples"
Stas Bekman's avatar
Stas Bekman committed
154
155
    data_dir_wmt = f"{data_dir_samples}/wmt_en_ro"
    data_dir_xsum = f"{data_dir_samples}/xsum"
156
157
158
159
160
161
162
163
164
165
    args_main = """
        --do_train
        --max_train_samples 4
        --per_device_train_batch_size 2
        --num_train_epochs 1
        --fp16
        --report_to none
        --overwrite_output_dir
        """.split()

166
    # try to cover as many models as possible once (it's enough to run on one task per model)
167
168
    # but need a tiny model for each
    #
169
    # should have "{model_type.upper()}_TINY" corresponding vars defined, e.g., T5_TINY, etc.
170
171
    tasks2models = {
        "trans": [
172
173
            "bart",
            "fsmt",
174
            "m2m_100",
175
176
177
            "marian",
            "mbart",
            "t5",
178
179
            "t5_v1",
            # "mt5", missing model files
180
        ],
181
        "sum": [
182
183
            "pegasus",
        ],
184
        "clm": [
185
186
187
            "big_bird",
            "bigbird_pegasus",
            "blenderbot",
Younes Belkada's avatar
Younes Belkada committed
188
            "bloom",
189
            "gpt2",
190
191
            "gpt_neo",
            "gptj",
192
            "xlm-roberta",
193
194
            "prophetnet",
            # "camembert", missing model files
195
        ],
196
        "mlm": [
197
198
199
            "albert",
            "deberta",
            "deberta-v2",
200
            "distilbert",
201
202
203
204
205
            "electra",
            "flaubert",
            "funnel",
            "layoutlm",
            # "reformer", # multiple issues with either mlm/qa/clas
206
        ],
207
        "qa": [
208
209
210
211
            "led",
            "longformer",
            "mobilebert",
            "mpnet",
212
            "roberta",
213
214
215
            "squeezebert",
            # "convbert", # missing tokenizer files
            # "layoutlmv2", missing model files
216
        ],
217
        "clas": [
218
219
            "bert",
            "xlnet",
220
221
            # "hubert", # missing tokenizer files
            # "ibert", # multiple issues with either mlm/qa/clas
222
223
224
            # "transfo-xl", # tokenizer issues as Salesforce/ctrl
            # "Salesforce/ctrl", # tokenizer issues
            # "openai-community/openai-gpt", missing model files
225
226
            # "tapas", multiple issues
        ],
227
        "img_clas": [
228
            "vit",
229
        ],
230
    }
231

232
    scripts_dir = f"{ROOT_DIRECTORY}/examples/pytorch"
233

234
235
    tasks = {
        "trans": f"""
236
237
238
239
        {scripts_dir}/translation/run_translation.py
        --train_file {data_dir_wmt}/train.json
        --source_lang en
        --target_lang ro
240
241
        --max_source_length 12
        --max_target_length 12
242
        """,
243
        "sum": f"""
244
245
246
247
        {scripts_dir}/summarization/run_summarization.py
        --train_file {data_dir_xsum}/sample.json
        --max_source_length 12
        --max_target_length 12
248
        --lang en
249
        """,
250
        "clm": f"""
251
        {scripts_dir}/language-modeling/run_clm.py
252
        --train_file {FIXTURE_DIRECTORY}/sample_text.txt
253
254
        --block_size 8
        """,
255
        "mlm": f"""
256
        {scripts_dir}/language-modeling/run_mlm.py
257
        --train_file {FIXTURE_DIRECTORY}/sample_text.txt
258
        """,
259
        "qa": f"""
260
261
262
        {scripts_dir}/question-answering/run_qa.py
        --train_file {data_dir_samples}/SQUAD/sample.json
        """,
263
        "clas": f"""
264
265
266
267
268
        {scripts_dir}/text-classification/run_glue.py
        --train_file {data_dir_samples}/MRPC/train.csv
        --max_seq_length 12
        --task_name MRPC
        """,
269
        "img_clas": f"""
270
271
272
273
        {scripts_dir}/image-classification/run_image_classification.py
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
            --remove_unused_columns False
            --max_steps 10
274
            --image_processor_name {DS_TESTS_DIRECTORY}/vit_feature_extractor.json
275
            --label_column_name labels
276
        """,
277
    }
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    launcher = get_launcher(distributed=True)

    cmds = {}
    for task, args in tasks.items():
        args = args.split()
        for model in tasks2models[task]:
            model_name = globals()[f"{model.upper().replace('-', '_')}_TINY"]
            args_model = f"--model_name_or_path {model_name}".split()
            cmds[f"{task}_{model}"] = launcher + args + args_model + args_main

            # # generation special case
            # if task == "gen":
            #     launcher = f"deepspeed --num_nodes 1 --num_gpus 1".split()
            #     args_model += f"--model_type {model}".split()
            #     cmds[f"{task}_{model}"] = launcher + args + args_model
            # else:

    return cmds


task_cmds = make_task_cmds()

ZERO2 = "zero2"
ZERO3 = "zero3"
303

304
305
stages = [ZERO2, ZERO3]

306
307
308
309
310
311
312
# future preparation:
# for now test just fp16, as these tests are quite slow
# FP16 = "fp16"
# BF16 = "bf16"
#
# dtypes = [FP16]
# so just hardcoding --fp16 for now
313
# if is_torch_bf16_gpu_available():
314
315
#     dtypes += [BF16]

316
317
318
319
320
321
322
323
324
325
326
327
328
329

def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, task_cmds.keys()))


@slow
@require_deepspeed
330
@require_torch_accelerator
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
class TestDeepSpeedModelZoo(TestCasePlus):
    """This class is for testing via an external script - can do multiple gpus"""

    def get_task_cmd(self, task, stage):
        # return a ready to run train cmd
        if task not in task_cmds:
            raise ValueError(f"don't know of task {task}, have {task_cmds.keys()}")

        cmd = task_cmds[task]
        args_ds = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()

        output_dir = self.get_auto_remove_tmp_dir()
        args_out = f"--output_dir {output_dir}".split()

        cmd += args_ds + args_out

        return cmd, output_dir

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_zero_to_fp32(self, stage, task):
        # testing the ability to do a run followed by recovery of full fp32 weights

        cmd, output_dir = self.get_task_cmd(task, stage)

        # 1. generate the checkpoint
        cmd += "--save_steps 1".split()
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] + cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        # 2. test that the fp32 weights get reconsolidated
        chkpt_dir = f"{output_dir}/checkpoint-1"
        recovered_model_path = f"{chkpt_dir}/out.bin"
        cmd = f"{chkpt_dir}/zero_to_fp32.py {chkpt_dir} {recovered_model_path}"
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        subprocess.check_call(cmd, shell=True)
        assert os.path.exists(recovered_model_path), f"{recovered_model_path} was not found"

        # possibly could also test that the resulting saved model is usable but given that we use
        # random models we won't know if it's any good