test_model_zoo.py 7.92 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
import os
import subprocess

from parameterized import parameterized
from transformers import is_torch_available
from transformers.testing_utils import (
    ExtendSysPath,
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
    require_deepspeed,
    require_torch_gpu,
    slow,
)
from transformers.trainer_utils import set_seed


tests_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
root_dir = os.path.dirname(tests_dir)
with ExtendSysPath(tests_dir):
    from test_trainer import TrainerIntegrationCommon  # noqa

    if is_torch_available():
        from test_trainer import RegressionModelConfig, RegressionPreTrainedModel, get_regression_trainer  # noqa


set_seed(42)

44
45
46
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# translation
FSMT_TINY = "stas/tiny-wmt19-en-de"
BART_TINY = "sshleifer/bart-tiny-random"
T5_SMALL = "t5-small"
T5_TINY = "patrickvonplaten/t5-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"

# summarization
PEGASUS_TINY = "stas/pegasus-cnn_dailymail-tiny-random"

# causal lm
GPT2_TINY = "sshleifer/tiny-gpt2"
XLM_ROBERTA_TINY = "hf-internal-testing/tiny-xlm-roberta"

# question-answering
ROBERTA_TINY = "sshleifer/tiny-distilroberta-base"

# masked lm
DISTILBERT_TINY = "sshleifer/tiny-distilbert-base-cased"
ELECTRA_TINY = "hf-internal-testing/tiny-electra"

# classification
XLNET_TINY = "sshleifer/tiny-xlnet-base-cased"
BERT_TINY = "hf-internal-testing/tiny-bert"


# TODO: to add:
# albert
# deberta
# funnel
# longformer
# dpr
# gpt_neo
# camembert
# deberta-v2
# m2m_100
# tapas
# vit
# big_bird


def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
    num_gpus = min(2, get_gpu_count()) if distributed else 1
95
96
    master_port = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263


def make_task_cmds():
    data_dir_fixtures = f"{tests_dir}/fixtures"
    data_dir_samples = f"{data_dir_fixtures}/tests_samples"
    data_dir_wmt = f"{data_dir_samples}/wmt_en_ro"
    data_dir_xsum = f"{data_dir_samples}/xsum"
    args_main = """
        --do_train
        --max_train_samples 4
        --per_device_train_batch_size 2
        --num_train_epochs 1
        --fp16
        --report_to none
        --overwrite_output_dir
        """.split()

    # XXX: try to cover as many models as possible once (it's enough to run on one task per model)
    # but need a tiny model for each
    #
    # should have T5_TINY, etc. global var defined
    tasks2models = dict(
        trans=[
            "bart",
            "fsmt",
            "marian",
            "mbart",
            "t5",
        ],
        sum=[
            "pegasus",
        ],
        clm=[
            "gpt2",
            "xlm-roberta",
        ],
        mlm=[
            "electra",
            "distilbert",
        ],
        qa=[
            "roberta",
        ],
        clas=[
            "bert",
            "xlnet",
        ],
    )

    scripts_dir = f"{root_dir}/examples/pytorch"

    tasks = dict(
        trans=f"""
        {scripts_dir}/translation/run_translation.py
        --train_file {data_dir_wmt}/train.json
        --source_lang en
        --target_lang ro
        """,
        sum=f"""
        {scripts_dir}/summarization/run_summarization.py
        --train_file {data_dir_xsum}/sample.json
        --max_source_length 12
        --max_target_length 12
        """,
        clm=f"""
        {scripts_dir}/language-modeling/run_clm.py
        --train_file {data_dir_fixtures}/sample_text.txt
        --block_size 8
        """,
        mlm=f"""
        {scripts_dir}/language-modeling/run_mlm.py
        --train_file {data_dir_fixtures}/sample_text.txt
        """,
        qa=f"""
        {scripts_dir}/question-answering/run_qa.py
        --train_file {data_dir_samples}/SQUAD/sample.json
        """,
        clas=f"""
        {scripts_dir}/text-classification/run_glue.py
        --train_file {data_dir_samples}/MRPC/train.csv
        --max_seq_length 12
        --task_name MRPC
        """,
    )

    launcher = get_launcher(distributed=True)

    cmds = {}
    for task, args in tasks.items():
        args = args.split()
        for model in tasks2models[task]:
            model_name = globals()[f"{model.upper().replace('-', '_')}_TINY"]
            args_model = f"--model_name_or_path {model_name}".split()
            cmds[f"{task}_{model}"] = launcher + args + args_model + args_main

            # # generation special case
            # if task == "gen":
            #     launcher = f"deepspeed --num_nodes 1 --num_gpus 1".split()
            #     args_model += f"--model_type {model}".split()
            #     cmds[f"{task}_{model}"] = launcher + args + args_model
            # else:

    return cmds


task_cmds = make_task_cmds()

ZERO2 = "zero2"
ZERO3 = "zero3"
stages = [ZERO2, ZERO3]


def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, task_cmds.keys()))


@slow
@require_deepspeed
@require_torch_gpu
class TestDeepSpeedModelZoo(TestCasePlus):
    """This class is for testing via an external script - can do multiple gpus"""

    def get_task_cmd(self, task, stage):
        # return a ready to run train cmd
        if task not in task_cmds:
            raise ValueError(f"don't know of task {task}, have {task_cmds.keys()}")

        cmd = task_cmds[task]
        args_ds = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()

        output_dir = self.get_auto_remove_tmp_dir()
        args_out = f"--output_dir {output_dir}".split()

        cmd += args_ds + args_out

        return cmd, output_dir

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_zero_to_fp32(self, stage, task):
        # testing the ability to do a run followed by recovery of full fp32 weights

        cmd, output_dir = self.get_task_cmd(task, stage)

        # 1. generate the checkpoint
        cmd += "--save_steps 1".split()
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] + cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        # 2. test that the fp32 weights get reconsolidated
        chkpt_dir = f"{output_dir}/checkpoint-1"
        recovered_model_path = f"{chkpt_dir}/out.bin"
        cmd = f"{chkpt_dir}/zero_to_fp32.py {chkpt_dir} {recovered_model_path}"
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        subprocess.check_call(cmd, shell=True)
        assert os.path.exists(recovered_model_path), f"{recovered_model_path} was not found"

        # possibly could also test that the resulting saved model is usable but given that we use
        # random models we won't know if it's any good