test_pipelines_text_generation.py 13.8 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
19
20
21
22
23
from transformers import (
    MODEL_FOR_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_CAUSAL_LM_MAPPING,
    TextGenerationPipeline,
    logging,
    pipeline,
)
24
from transformers.testing_utils import (
25
    CaptureLogger,
26
    is_pipeline_test,
27
28
29
30
    require_accelerate,
    require_tf,
    require_torch,
    require_torch_gpu,
31
    require_torch_or_tf,
32
)
33

34
from .test_pipelines_common import ANY
35
36


37
@is_pipeline_test
38
@require_torch_or_tf
39
class TextGenerationPipelineTests(unittest.TestCase):
40
41
    model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
42

43
44
45
46
47
48
49
50
51
    @require_torch
    def test_small_model_pt(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt")
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
52
53
54
55
                    "generated_text": (
                        "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                        " oscope. FiliFili@@"
                    )
56
57
58
                }
            ],
        )
59

60
61
62
63
64
65
        outputs = text_generator(["This is a test", "This is a second test"])
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
66
67
68
69
                        "generated_text": (
                            "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                            " oscope. FiliFili@@"
                        )
70
71
72
73
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
74
75
76
77
                        "generated_text": (
                            "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"
                            " oscope. oscope. FiliFili@@"
                        )
78
79
                    }
                ],
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            ],
        )

        outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
        self.assertEqual(
            outputs,
            [
                {"generated_token_ids": ANY(list)},
                {"generated_token_ids": ANY(list)},
            ],
        )
        text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id
        text_generator.tokenizer.pad_token = "<pad>"
        outputs = text_generator(
            ["This is a test", "This is a second test"],
            do_sample=True,
            num_return_sequences=2,
            batch_size=2,
            return_tensors=True,
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
111
112
            ],
        )
113

114
115
116
    @require_tf
    def test_small_model_tf(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
117

118
119
120
121
122
123
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
124
125
126
127
                    "generated_text": (
                        "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                        " please,"
                    )
128
129
130
                }
            ],
        )
131

132
133
134
135
136
137
        outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
138
139
140
141
                        "generated_text": (
                            "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                            " please,"
                        )
142
143
144
145
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
148
149
                        "generated_text": (
                            "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"
                            " Cannes 閲閲Cannes Cannes Cannes 攵 please,"
                        )
150
151
152
153
                    }
                ],
            ],
        )
154

155
    def get_test_pipeline(self, model, tokenizer, processor):
156
        text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
157
158
        return text_generator, ["This is a test", "Another test"]

159
160
161
162
163
164
165
166
167
168
169
170
    def test_stop_sequence_stopping_criteria(self):
        prompt = """Hello I believe in"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        output = text_generator(prompt)
        self.assertEqual(
            output,
            [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}],
        )

        output = text_generator(prompt, stop_sequence=" fe")
        self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])

171
172
173
174
    def run_pipeline_test(self, text_generator, _):
        model = text_generator.model
        tokenizer = text_generator.tokenizer

175
        outputs = text_generator("This is a test")
176
177
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
178
179

        outputs = text_generator("This is a test", return_full_text=False)
180
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
181
182
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

183
        text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False)
184
        outputs = text_generator("This is a test")
185
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
186
187
188
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

        outputs = text_generator("This is a test", return_full_text=True)
189
190
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
            ],
        )

        if text_generator.tokenizer.pad_token is not None:
            outputs = text_generator(
                ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
            )
            self.assertEqual(
                outputs,
                [
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                ],
            )

213
214
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_text=True)
Nicolas Patry's avatar
Nicolas Patry committed
215
216
217
218
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_tensors=True)
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_text=True, return_tensors=True)
219

220
221
222
223
        # Empty prompt is slighly special
        # it requires BOS token to exist.
        # Special case for Pegasus which will always append EOS so will
        # work even without BOS.
224
225
226
227
228
        if (
            text_generator.tokenizer.bos_token_id is not None
            or "Pegasus" in tokenizer.__class__.__name__
            or "Git" in model.__class__.__name__
        ):
229
230
231
232
233
            outputs = text_generator("")
            self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        else:
            with self.assertRaises((ValueError, AssertionError)):
                outputs = text_generator("")
234
235
236
237
238
239
240
241

        if text_generator.framework == "tf":
            # TF generation does not support max_new_tokens, and it's impossible
            # to control long generation with only max_length without
            # fancy calculation, dismissing tests for now.
            return
        # We don't care about infinite range models.
        # They already work.
Suraj Patil's avatar
Suraj Patil committed
242
        # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
243
244
245
246
247
        EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS = ["RwkvForCausalLM", "XGLMForCausalLM"]
        if (
            tokenizer.model_max_length < 10000
            and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
        ):
248
249
250
251
252
253
254
255
256
257
258
259
            # Handling of large generations
            with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
                text_generator("This is a test" * 500, max_new_tokens=20)

            outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20)
            # Hole strategy cannot work
            with self.assertRaises(ValueError):
                text_generator(
                    "This is a test" * 500,
                    handle_long_generation="hole",
                    max_new_tokens=tokenizer.model_max_length + 10,
                )
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

    @require_torch
    @require_accelerate
    @require_torch_gpu
    def test_small_model_pt_bloom_accelerate(self):
        import torch

        # Classic `model_kwargs`
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
        )
        self.assertEqual(pipe.model.device, torch.device(0))
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

        # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16)
        self.assertEqual(pipe.model.device, torch.device(0))
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

304
        # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
305
306
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto")
        self.assertEqual(pipe.model.device, torch.device(0))
307
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32)
308
309
310
311
312
313
314
315
316
317
318
319
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )
320
321
322
323
324
325
326
327

    @require_torch
    @require_torch_gpu
    def test_small_model_fp16(self):
        import torch

        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device=0, torch_dtype=torch.float16)
        pipe("This is a test")
328
329
330
331
332
333
334
335
336

    @require_torch
    @require_accelerate
    @require_torch_gpu
    def test_pipeline_accelerate_top_p(self):
        import torch

        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.float16)
        pipe("This is a test", do_sample=True, top_p=0.5)
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

    def test_pipeline_length_setting_warning(self):
        prompt = """Hello world"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        if text_generator.model.framework == "tf":
            logger = logging.get_logger("transformers.generation.tf_utils")
        else:
            logger = logging.get_logger("transformers.generation.utils")
        logger_msg = "Both `max_new_tokens`"  # The beggining of the message to be checked in this test

        # Both are set by the user -> log warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10, max_new_tokens=1)
        self.assertIn(logger_msg, cl.out)

        # The user only sets one -> no warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_new_tokens=1)
        self.assertNotIn(logger_msg, cl.out)

        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10)
        self.assertNotIn(logger_msg, cl.out)