test_model_zoo.py 12.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
import os
import subprocess
18
from os.path import dirname
19
20

from parameterized import parameterized
Stas Bekman's avatar
Stas Bekman committed
21
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
22
23
24
25
26
from transformers import is_torch_available
from transformers.testing_utils import (
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
Yih-Dar's avatar
Yih-Dar committed
27
    get_tests_dir,
28
29
30
31
32
33
34
    require_deepspeed,
    require_torch_gpu,
    slow,
)
from transformers.trainer_utils import set_seed


35
if is_torch_available():
Stas Bekman's avatar
Stas Bekman committed
36
37
38
39
40
    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
        get_regression_trainer,
    )
41
42
43
44


set_seed(42)

45
46
47
48
FIXTURE_DIRECTORY = get_tests_dir("fixtures")
ROOT_DIRECTORY = os.path.join(dirname(get_tests_dir()))
DS_TESTS_DIRECTORY = dirname(os.path.abspath(__file__))

49
50
51
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

52
53
T5_SMALL = "t5-small"

54
55
56
57
58
59
60
# *** Working Models ***
ALBERT_TINY = "hf-internal-testing/tiny-albert"
BART_TINY = "sshleifer/bart-tiny-random"
BERT_TINY = "hf-internal-testing/tiny-bert"
BIGBIRD_PEGASUS_TINY = "hf-internal-testing/tiny-random-bigbird_pegasus"
BIG_BIRD_TINY = "hf-internal-testing/tiny-random-big_bird"
BLENDERBOT_TINY = "hf-internal-testing/tiny-random-blenderbot"
Younes Belkada's avatar
Younes Belkada committed
61
BLOOM_TINY = "bigscience/bigscience-small-testing"
62
63
64
65
66
67
68
DEBERTA_TINY = "hf-internal-testing/tiny-random-deberta"
DEBERTA_V2_TINY = "hf-internal-testing/tiny-random-deberta-v2"
DISTILBERT_TINY = "sshleifer/tiny-distilbert-base-cased"
ELECTRA_TINY = "hf-internal-testing/tiny-electra"
FLAUBERT_TINY = "hf-internal-testing/tiny-random-flaubert"
FSMT_TINY = "stas/tiny-wmt19-en-de"
FUNNEL_TINY = "hf-internal-testing/tiny-random-funnel"
69
GPT2_TINY = "sshleifer/tiny-gpt2"
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
GPTJ_TINY = "hf-internal-testing/tiny-random-gptj"
GPT_NEO_TINY = "hf-internal-testing/tiny-random-gpt_neo"
LAYOUTLM_TINY = "hf-internal-testing/tiny-layoutlm"
LED_TINY = "hf-internal-testing/tiny-random-led"
LONGFORMER_TINY = "hf-internal-testing/tiny-random-longformer"
M2M_100_TINY = "stas/tiny-m2m_100"  # hf tiny model is unsuitable
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
MBART_TINY = "sshleifer/tiny-mbart"
MOBILEBERT_TINY = "hf-internal-testing/tiny-random-mobilebert"
MPNET_TINY = "hf-internal-testing/tiny-random-mpnet"
PEGASUS_TINY = "stas/pegasus-cnn_dailymail-tiny-random"
PROPHETNET_TINY = "hf-internal-testing/tiny-random-prophetnet"
ROBERTA_TINY = "sshleifer/tiny-distilroberta-base"
SQUEEZEBERT_TINY = "hf-internal-testing/tiny-random-squeezebert"
T5_TINY = "patrickvonplaten/t5-tiny-random"
T5_V1_TINY = "hf-internal-testing/tiny-random-t5-v1.1"
VIT_TINY = "hf-internal-testing/tiny-random-vit"
87
XLM_ROBERTA_TINY = "hf-internal-testing/tiny-xlm-roberta"
88
XLNET_TINY = "sshleifer/tiny-xlnet-base-cased"
89
90


91
# *** To Fix ***
92
93


94
95
96
97
98
99
100
101
102
103
104
105
106
107
# *** tiny model issues ***
# missing model files:
MT5_TINY = "hf-internal-testing/tiny-random-mt5"
CAMEMBERT_TINY = "hf-internal-testing/tiny-random-camembert"
OPENAI_GPT_TINY = "hf-internal-testing/tiny-random-openai-gpt"

# missing tokenizer files
CONVBERT_TINY = "hf-internal-testing/tiny-random-convbert"
LAYOUTLMV2_TINY = "hf-internal-testing/tiny-random-layoutlmv2"
HUBERT_TINY = "hf-internal-testing/tiny-random-hubert"

# issues with tokenizer
CTRL_TINY = "hf-internal-testing/tiny-random-ctrl"
TRANSFO_XL_TINY = "hf-internal-testing/tiny-random-transfo-xl"  # same as ctrl
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# other issues with tiny models
IBERT_TINY = "hf-internal-testing/tiny-random-ibert"  # multiple issues with either mlm/qa/clas
REFORMER_TINY = "hf-internal-testing/tiny-random-reformer"  # multiple issues with either mlm/qa/clas

# *** Lacking official examples to test with ***
# or not working with examples
DPR_TINY = "hf-internal-testing/tiny-random-dpr"
# - "dpr"  examples/research_projects/rag-end2end-retriever/
RAG_TINY = "hf-internal-testing/tiny-random-rag"
# - "rag" research_projects
LUKE_TINY = ""
# - "luke" Entities classes - no plan to make such example
LXMERT_TINY = "hf-internal-testing/tiny-random-lxmert"
# - "lxmert" doesn't work with run_qa.py
CLIP_TINY = "hf-internal-testing/tiny-random-clip"
# - "clip" nothing under pytorch examples - XXX: Suraj is working on adding some - check by end of Sep
SPEECH_TO_TEXT_TINY = "hf-internal-testing/tiny-random-speech_to_text"
# - "speech_to_text", nothing under pytorch examples


# *** Reactive mode ***
# models with low usage, unstable API, things about to change - do nothing about the following until someone runs into a problem
TAPAS_TINY = "hf-internal-testing/tiny-random-tapas"
# additional notes on tapas
133
# 1. "Table must be of type pd.DataFrame" failure
134
135
136
137


# TODO: new models to add:
#
138
139
140
141
142
143
144
145


def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
    num_gpus = min(2, get_gpu_count()) if distributed else 1
146
147
    master_port = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
148
149
150


def make_task_cmds():
151
    data_dir_samples = f"{FIXTURE_DIRECTORY}/tests_samples"
Stas Bekman's avatar
Stas Bekman committed
152
153
    data_dir_wmt = f"{data_dir_samples}/wmt_en_ro"
    data_dir_xsum = f"{data_dir_samples}/xsum"
154
155
156
157
158
159
160
161
162
163
    args_main = """
        --do_train
        --max_train_samples 4
        --per_device_train_batch_size 2
        --num_train_epochs 1
        --fp16
        --report_to none
        --overwrite_output_dir
        """.split()

164
    # try to cover as many models as possible once (it's enough to run on one task per model)
165
166
    # but need a tiny model for each
    #
167
    # should have "{model_type.upper()}_TINY" corresponding vars defined, e.g., T5_TINY, etc.
168
169
170
171
    tasks2models = dict(
        trans=[
            "bart",
            "fsmt",
172
            "m2m_100",
173
174
175
            "marian",
            "mbart",
            "t5",
176
177
            "t5_v1",
            # "mt5", missing model files
178
179
180
181
182
        ],
        sum=[
            "pegasus",
        ],
        clm=[
183
184
185
            "big_bird",
            "bigbird_pegasus",
            "blenderbot",
Younes Belkada's avatar
Younes Belkada committed
186
            "bloom",
187
            "gpt2",
188
189
            "gpt_neo",
            "gptj",
190
            "xlm-roberta",
191
192
            "prophetnet",
            # "camembert", missing model files
193
194
        ],
        mlm=[
195
196
197
            "albert",
            "deberta",
            "deberta-v2",
198
            "distilbert",
199
200
201
202
203
            "electra",
            "flaubert",
            "funnel",
            "layoutlm",
            # "reformer", # multiple issues with either mlm/qa/clas
204
205
        ],
        qa=[
206
207
208
209
            "led",
            "longformer",
            "mobilebert",
            "mpnet",
210
            "roberta",
211
212
213
            "squeezebert",
            # "convbert", # missing tokenizer files
            # "layoutlmv2", missing model files
214
215
216
217
        ],
        clas=[
            "bert",
            "xlnet",
218
219
220
221
222
223
224
225
226
            # "hubert", # missing tokenizer files
            # "ibert", # multiple issues with either mlm/qa/clas
            # "transfo-xl", # tokenizer issues as ctrl
            # "ctrl", # tokenizer issues
            # "openai-gpt", missing model files
            # "tapas", multiple issues
        ],
        img_clas=[
            "vit",
227
228
229
        ],
    )

230
    scripts_dir = f"{ROOT_DIRECTORY}/examples/pytorch"
231
232
233
234
235
236
237
238
239
240
241
242
243

    tasks = dict(
        trans=f"""
        {scripts_dir}/translation/run_translation.py
        --train_file {data_dir_wmt}/train.json
        --source_lang en
        --target_lang ro
        """,
        sum=f"""
        {scripts_dir}/summarization/run_summarization.py
        --train_file {data_dir_xsum}/sample.json
        --max_source_length 12
        --max_target_length 12
244
        --lang en
245
246
247
        """,
        clm=f"""
        {scripts_dir}/language-modeling/run_clm.py
248
        --train_file {FIXTURE_DIRECTORY}/sample_text.txt
249
250
251
252
        --block_size 8
        """,
        mlm=f"""
        {scripts_dir}/language-modeling/run_mlm.py
253
        --train_file {FIXTURE_DIRECTORY}/sample_text.txt
254
255
256
257
258
259
260
261
262
263
264
        """,
        qa=f"""
        {scripts_dir}/question-answering/run_qa.py
        --train_file {data_dir_samples}/SQUAD/sample.json
        """,
        clas=f"""
        {scripts_dir}/text-classification/run_glue.py
        --train_file {data_dir_samples}/MRPC/train.csv
        --max_seq_length 12
        --task_name MRPC
        """,
265
266
267
268
269
        img_clas=f"""
        {scripts_dir}/image-classification/run_image_classification.py
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
            --remove_unused_columns False
            --max_steps 10
270
            --image_processor_name {DS_TESTS_DIRECTORY}/vit_feature_extractor.json
271
        """,
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    )

    launcher = get_launcher(distributed=True)

    cmds = {}
    for task, args in tasks.items():
        args = args.split()
        for model in tasks2models[task]:
            model_name = globals()[f"{model.upper().replace('-', '_')}_TINY"]
            args_model = f"--model_name_or_path {model_name}".split()
            cmds[f"{task}_{model}"] = launcher + args + args_model + args_main

            # # generation special case
            # if task == "gen":
            #     launcher = f"deepspeed --num_nodes 1 --num_gpus 1".split()
            #     args_model += f"--model_type {model}".split()
            #     cmds[f"{task}_{model}"] = launcher + args + args_model
            # else:

    return cmds


task_cmds = make_task_cmds()

ZERO2 = "zero2"
ZERO3 = "zero3"
298

299
300
stages = [ZERO2, ZERO3]

301
302
303
304
305
306
307
# future preparation:
# for now test just fp16, as these tests are quite slow
# FP16 = "fp16"
# BF16 = "bf16"
#
# dtypes = [FP16]
# so just hardcoding --fp16 for now
308
# if is_torch_bf16_gpu_available():
309
310
#     dtypes += [BF16]

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, task_cmds.keys()))


@slow
@require_deepspeed
@require_torch_gpu
class TestDeepSpeedModelZoo(TestCasePlus):
    """This class is for testing via an external script - can do multiple gpus"""

    def get_task_cmd(self, task, stage):
        # return a ready to run train cmd
        if task not in task_cmds:
            raise ValueError(f"don't know of task {task}, have {task_cmds.keys()}")

        cmd = task_cmds[task]
        args_ds = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()

        output_dir = self.get_auto_remove_tmp_dir()
        args_out = f"--output_dir {output_dir}".split()

        cmd += args_ds + args_out

        return cmd, output_dir

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_zero_to_fp32(self, stage, task):
        # testing the ability to do a run followed by recovery of full fp32 weights

        cmd, output_dir = self.get_task_cmd(task, stage)

        # 1. generate the checkpoint
        cmd += "--save_steps 1".split()
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] + cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        # 2. test that the fp32 weights get reconsolidated
        chkpt_dir = f"{output_dir}/checkpoint-1"
        recovered_model_path = f"{chkpt_dir}/out.bin"
        cmd = f"{chkpt_dir}/zero_to_fp32.py {chkpt_dir} {recovered_model_path}"
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        subprocess.check_call(cmd, shell=True)
        assert os.path.exists(recovered_model_path), f"{recovered_model_path} was not found"

        # possibly could also test that the resulting saved model is usable but given that we use
        # random models we won't know if it's any good