"...git@developer.sourcefind.cn:wangsen/paddle_dbnet.git" did not exist on "aa1d40b1d90cc00f75c0f48ef3ee427d673c0fec"
Unverified Commit 826f0457 authored by Lysandre Debut's avatar Lysandre Debut Committed by GitHub
Browse files

Model templates encoder only (#8509)



* Model templates

* TensorFlow

* Remove pooler

* CI

* Tokenizer + Refactoring

* Encoder-Decoder

* Let's go testing

* Encoder-Decoder in TF

* Let's go testing in TF

* Documentation

* README

* Fixes

* Better names

* Style

* Update docs

* Choose to skip either TF or PT

* Code quality fixes

* Add to testing suite

* Update file path

* Cookiecutter path

* Update `transformers` path

* Handle rebasing

* Remove seq2seq from model templates

* Remove s2s config

* Apply Sylvain and Patrick comments

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Last fixes from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 42e2d02e
......@@ -4,10 +4,12 @@ on:
push:
branches:
- master
- model-templates
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
# pull_request:
repository_dispatch:
......@@ -55,6 +57,14 @@ jobs:
python -c "import torch; print('Cuda available:', torch.cuda.is_available())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Create model files
run: |
source .env/bin/activate
transformers-cli add-new-model --testing --testing_file=templates/cookiecutter/tests/encoder-bert-tokenizer.json --path=templates/cookiecutter
transformers-cli add-new-model --testing --testing_file=templates/cookiecutter/tests/pt-encoder-bert-tokenizer.json --path=templates/cookiecutter
transformers-cli add-new-model --testing --testing_file=templates/cookiecutter/tests/standalone.json --path=templates/cookiecutter
transformers-cli add-new-model --testing --testing_file=templates/cookiecutter/tests/tf-encoder-bert-tokenizer.json --path=templates/cookiecutter
- name: Run all non-slow tests on GPU
env:
OMP_NUM_THREADS: 1
......@@ -116,6 +126,14 @@ jobs:
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
- name: Create model files
run: |
source .env/bin/activate
transformers-cli add-new-model --testing --testing_file=templates/cookiecutter/tests/encoder-bert-tokenizer.json --path=templates/cookiecutter
transformers-cli add-new-model --testing --testing_file=templates/cookiecutter/tests/pt-encoder-bert-tokenizer.json --path=templates/cookiecutter
transformers-cli add-new-model --testing --testing_file=templates/cookiecutter/tests/standalone.json --path=templates/cookiecutter
transformers-cli add-new-model --testing --testing_file=templates/cookiecutter/tests/tf-encoder-bert-tokenizer.json --path=templates/cookiecutter
- name: Run all non-slow tests on GPU
env:
OMP_NUM_THREADS: 1
......
......@@ -98,12 +98,13 @@ else:
extras["tokenizers"] = ["tokenizers==0.9.2"]
extras["onnxruntime"] = ["onnxruntime>=1.4.0", "onnxruntime-tools>=1.4.2"]
extras["modelcreation"] = ["cookiecutter==1.7.2"]
extras["serving"] = ["pydantic", "uvicorn", "fastapi", "starlette"]
extras["sentencepiece"] = ["sentencepiece==0.1.91"]
extras["retrieval"] = ["faiss-cpu", "datasets"]
extras["testing"] = ["pytest", "pytest-xdist", "timeout-decorator", "parameterized", "psutil"] + extras["retrieval"]
extras["testing"] = ["pytest", "pytest-xdist", "timeout-decorator", "parameterized", "psutil"] + extras["retrieval"] + extras["modelcreation"]
# sphinx-rtd-theme==0.5.0 introduced big changes in the style.
extras["docs"] = ["recommonmark", "sphinx==3.2.1", "sphinx-markdown-tables", "sphinx-rtd-theme==0.4.3", "sphinx-copybutton"]
extras["quality"] = ["black >= 20.8b1", "isort >= 5.5.4", "flake8 >= 3.8.3"]
......@@ -111,7 +112,7 @@ extras["quality"] = ["black >= 20.8b1", "isort >= 5.5.4", "flake8 >= 3.8.3"]
extras["all"] = extras["tf"] + extras["torch"] + extras["flax"] + extras["sentencepiece"] + extras["tokenizers"]
extras["dev"] = extras["all"] + extras["testing"] + extras["quality"] + extras["ja"] + extras["docs"] + extras["sklearn"]
extras["dev"] = extras["all"] + extras["testing"] + extras["quality"] + extras["ja"] + extras["docs"] + extras["sklearn"] + extras["modelcreation"]
setup(
......
import json
import os
import shutil
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import List
from cookiecutter.main import cookiecutter
from transformers.commands import BaseTransformersCLICommand
from ..utils import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def add_new_model_command_factory(args: Namespace):
return AddNewModelCommand(args.testing, args.testing_file, path=args.path)
class AddNewModelCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
add_new_model_parser = parser.add_parser("add-new-model")
add_new_model_parser.add_argument("--testing", action="store_true", help="If in testing mode.")
add_new_model_parser.add_argument("--testing_file", type=str, help="Configuration file on which to run.")
add_new_model_parser.add_argument(
"--path", type=str, help="Path to cookiecutter. Should only be used for testing purposes."
)
add_new_model_parser.set_defaults(func=add_new_model_command_factory)
def __init__(self, testing: bool, testing_file: str, path=None, *args):
self._testing = testing
self._testing_file = testing_file
self._path = path
def run(self):
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
directories = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]]
if len(directories) > 0:
raise ValueError(
"Several directories starting with `cookiecutter-template-` in current working directory. "
"Please clean your directory by removing all folders startign with `cookiecutter-template-` or "
"change your working directory."
)
path_to_transformer_root = (
Path(__file__).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent
)
path_to_cookiecutter = path_to_transformer_root / "templates" / "cookiecutter"
# Execute cookiecutter
if not self._testing:
cookiecutter(str(path_to_cookiecutter))
else:
with open(self._testing_file, "r") as configuration_file:
testing_configuration = json.load(configuration_file)
cookiecutter(
str(path_to_cookiecutter if self._path is None else self._path),
no_input=True,
extra_context=testing_configuration,
)
directory = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0]
# Retrieve configuration
with open(directory + "/configuration.json", "r") as configuration_file:
configuration = json.load(configuration_file)
lowercase_model_name = configuration["lowercase_modelname"]
pytorch_or_tensorflow = configuration["generate_tensorflow_and_pytorch"]
os.remove(f"{directory}/configuration.json")
output_pytorch = "PyTorch" in pytorch_or_tensorflow
output_tensorflow = "TensorFlow" in pytorch_or_tensorflow
shutil.move(
f"{directory}/configuration_{lowercase_model_name}.py",
f"{path_to_transformer_root}/src/transformers/configuration_{lowercase_model_name}.py",
)
def remove_copy_lines(path):
with open(path, "r") as f:
lines = f.readlines()
with open(path, "w") as f:
for line in lines:
if "# Copied from transformers." not in line:
f.write(line)
if output_pytorch:
if not self._testing:
remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py")
shutil.move(
f"{directory}/modeling_{lowercase_model_name}.py",
f"{path_to_transformer_root}/src/transformers/modeling_{lowercase_model_name}.py",
)
shutil.move(
f"{directory}/test_modeling_{lowercase_model_name}.py",
f"{path_to_transformer_root}/tests/test_modeling_{lowercase_model_name}.py",
)
else:
os.remove(f"{directory}/modeling_{lowercase_model_name}.py")
os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py")
if output_tensorflow:
if not self._testing:
remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py")
shutil.move(
f"{directory}/modeling_tf_{lowercase_model_name}.py",
f"{path_to_transformer_root}/src/transformers/modeling_tf_{lowercase_model_name}.py",
)
shutil.move(
f"{directory}/test_modeling_tf_{lowercase_model_name}.py",
f"{path_to_transformer_root}/tests/test_modeling_tf_{lowercase_model_name}.py",
)
else:
os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py")
os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py")
shutil.move(
f"{directory}/{lowercase_model_name}.rst",
f"{path_to_transformer_root}/docs/source/model_doc/{lowercase_model_name}.rst",
)
shutil.move(
f"{directory}/tokenization_{lowercase_model_name}.py",
f"{path_to_transformer_root}/src/transformers/tokenization_{lowercase_model_name}.py",
)
from os import fdopen, remove
from shutil import copymode, move
from tempfile import mkstemp
def replace(original_file: str, line_to_copy_below: str, lines_to_copy: List[str]):
# Create temp file
fh, abs_path = mkstemp()
line_found = False
with fdopen(fh, "w") as new_file:
with open(original_file) as old_file:
for line in old_file:
new_file.write(line)
if line_to_copy_below in line:
line_found = True
for line_to_copy in lines_to_copy:
new_file.write(line_to_copy)
if not line_found:
raise ValueError(f"Line {line_to_copy_below} was not found in file.")
# Copy the file permissions from the old file to the new file
copymode(original_file, abs_path)
# Remove original file
remove(original_file)
# Move new file
move(abs_path, original_file)
def skip_units(line):
return ("generating PyTorch" in line and not output_pytorch) or (
"generating TensorFlow" in line and not output_tensorflow
)
def replace_in_files(path_to_datafile):
with open(path_to_datafile) as datafile:
lines_to_copy = []
skip_file = False
skip_snippet = False
for line in datafile:
if "# To replace in: " in line and "##" not in line:
file_to_replace_in = line.split('"')[1]
skip_file = skip_units(line)
elif "# Below: " in line and "##" not in line:
line_to_copy_below = line.split('"')[1]
skip_snippet = skip_units(line)
elif "# End." in line and "##" not in line:
if not skip_file and not skip_snippet:
replace(file_to_replace_in, line_to_copy_below, lines_to_copy)
lines_to_copy = []
elif "# Replace with" in line and "##" not in line:
lines_to_copy = []
elif "##" not in line:
lines_to_copy.append(line)
remove(path_to_datafile)
replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py")
os.rmdir(directory)
#!/usr/bin/env python
from argparse import ArgumentParser
from transformers.commands.add_new_model import AddNewModelCommand
from transformers.commands.convert import ConvertCommand
from transformers.commands.download import DownloadCommand
from transformers.commands.env import EnvironmentCommand
......@@ -20,6 +21,7 @@ def main():
RunCommand.register_subcommand(commands_parser)
ServeCommand.register_subcommand(commands_parser)
UserCommands.register_subcommand(commands_parser)
AddNewModelCommand.register_subcommand(commands_parser)
# Let's go
args = parser.parse_args()
......
......@@ -59,6 +59,7 @@ from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfi
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = dict(
(key, value)
for pretrained_map in [
# Add archive maps here
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_CONFIG_ARCHIVE_MAP,
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
......@@ -95,6 +96,7 @@ ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = dict(
CONFIG_MAPPING = OrderedDict(
[
# Add configs here
("retribert", RetriBertConfig),
("t5", T5Config),
("mobilebert", MobileBertConfig),
......@@ -136,6 +138,7 @@ CONFIG_MAPPING = OrderedDict(
MODEL_NAMES_MAPPING = OrderedDict(
[
# Add full (and cased) model names here
("retribert", "RetriBERT"),
("t5", "T5"),
("mobilebert", "MobileBERT"),
......
......@@ -226,11 +226,14 @@ from .modeling_xlnet import (
from .utils import logging
# Add modeling imports here
logger = logging.get_logger(__name__)
MODEL_MAPPING = OrderedDict(
[
# Base model mapping
(RetriBertConfig, RetriBertModel),
(T5Config, T5Model),
(DistilBertConfig, DistilBertModel),
......@@ -266,6 +269,7 @@ MODEL_MAPPING = OrderedDict(
MODEL_FOR_PRETRAINING_MAPPING = OrderedDict(
[
# Model for pre-training mapping
(LayoutLMConfig, LayoutLMForMaskedLM),
(RetriBertConfig, RetriBertModel),
(T5Config, T5ForConditionalGeneration),
......@@ -295,6 +299,7 @@ MODEL_FOR_PRETRAINING_MAPPING = OrderedDict(
MODEL_WITH_LM_HEAD_MAPPING = OrderedDict(
[
# Model with LM heads mapping
(LayoutLMConfig, LayoutLMForMaskedLM),
(T5Config, T5ForConditionalGeneration),
(DistilBertConfig, DistilBertForMaskedLM),
......@@ -325,6 +330,7 @@ MODEL_WITH_LM_HEAD_MAPPING = OrderedDict(
MODEL_FOR_CAUSAL_LM_MAPPING = OrderedDict(
[
# Model for Causal LM mapping
(CamembertConfig, CamembertForCausalLM),
(XLMRobertaConfig, XLMRobertaForCausalLM),
(RobertaConfig, RobertaForCausalLM),
......@@ -347,6 +353,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING = OrderedDict(
MODEL_FOR_MASKED_LM_MAPPING = OrderedDict(
[
# Model for Masked LM mapping
(LayoutLMConfig, LayoutLMForMaskedLM),
(DistilBertConfig, DistilBertForMaskedLM),
(AlbertConfig, AlbertForMaskedLM),
......@@ -368,6 +375,7 @@ MODEL_FOR_MASKED_LM_MAPPING = OrderedDict(
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
(T5Config, T5ForConditionalGeneration),
(PegasusConfig, PegasusForConditionalGeneration),
(MarianConfig, MarianMTModel),
......@@ -383,6 +391,7 @@ MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = OrderedDict(
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict(
[
# Model for Sequence Classification mapping
(DistilBertConfig, DistilBertForSequenceClassification),
(AlbertConfig, AlbertForSequenceClassification),
(CamembertConfig, CamembertForSequenceClassification),
......@@ -407,6 +416,7 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict(
MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict(
[
# Model for Question Answering mapping
(DistilBertConfig, DistilBertForQuestionAnswering),
(AlbertConfig, AlbertForQuestionAnswering),
(CamembertConfig, CamembertForQuestionAnswering),
......@@ -429,6 +439,7 @@ MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict(
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = OrderedDict(
[
# Model for Token Classification mapping
(LayoutLMConfig, LayoutLMForTokenClassification),
(DistilBertConfig, DistilBertForTokenClassification),
(CamembertConfig, CamembertForTokenClassification),
......@@ -450,6 +461,7 @@ MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = OrderedDict(
MODEL_FOR_MULTIPLE_CHOICE_MAPPING = OrderedDict(
[
# Model for Multiple Choice mapping
(CamembertConfig, CamembertForMultipleChoice),
(ElectraConfig, ElectraForMultipleChoice),
(XLMRobertaConfig, XLMRobertaForMultipleChoice),
......
......@@ -169,11 +169,14 @@ from .modeling_tf_xlnet import (
from .utils import logging
# Add modeling imports here
logger = logging.get_logger(__name__)
TF_MODEL_MAPPING = OrderedDict(
[
# Base model mapping
(LxmertConfig, TFLxmertModel),
(T5Config, TFT5Model),
(DistilBertConfig, TFDistilBertModel),
......@@ -200,6 +203,7 @@ TF_MODEL_MAPPING = OrderedDict(
TF_MODEL_FOR_PRETRAINING_MAPPING = OrderedDict(
[
# Model for pre-training mapping
(LxmertConfig, TFLxmertForPreTraining),
(T5Config, TFT5ForConditionalGeneration),
(DistilBertConfig, TFDistilBertForMaskedLM),
......@@ -224,6 +228,7 @@ TF_MODEL_FOR_PRETRAINING_MAPPING = OrderedDict(
TF_MODEL_WITH_LM_HEAD_MAPPING = OrderedDict(
[
# Model with LM heads mapping
(T5Config, TFT5ForConditionalGeneration),
(DistilBertConfig, TFDistilBertForMaskedLM),
(AlbertConfig, TFAlbertForMaskedLM),
......@@ -249,6 +254,7 @@ TF_MODEL_WITH_LM_HEAD_MAPPING = OrderedDict(
TF_MODEL_FOR_CAUSAL_LM_MAPPING = OrderedDict(
[
# Model for Causal LM mapping
(BertConfig, TFBertLMHeadModel),
(OpenAIGPTConfig, TFOpenAIGPTLMHeadModel),
(GPT2Config, TFGPT2LMHeadModel),
......@@ -264,6 +270,7 @@ TF_MODEL_FOR_CAUSAL_LM_MAPPING = OrderedDict(
TF_MODEL_FOR_MASKED_LM_MAPPING = OrderedDict(
[
# Model for Masked LM mapping
(DistilBertConfig, TFDistilBertForMaskedLM),
(AlbertConfig, TFAlbertForMaskedLM),
(CamembertConfig, TFCamembertForMaskedLM),
......@@ -282,6 +289,7 @@ TF_MODEL_FOR_MASKED_LM_MAPPING = OrderedDict(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
(T5Config, TFT5ForConditionalGeneration),
(MarianConfig, TFMarianMTModel),
(MBartConfig, TFMBartForConditionalGeneration),
......@@ -293,6 +301,7 @@ TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = OrderedDict(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict(
[
# Model for Sequence Classification mapping
(DistilBertConfig, TFDistilBertForSequenceClassification),
(AlbertConfig, TFAlbertForSequenceClassification),
(CamembertConfig, TFCamembertForSequenceClassification),
......@@ -310,6 +319,7 @@ TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict(
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict(
[
# Model for Question Answering mapping
(DistilBertConfig, TFDistilBertForQuestionAnswering),
(AlbertConfig, TFAlbertForQuestionAnswering),
(CamembertConfig, TFCamembertForQuestionAnswering),
......@@ -328,6 +338,7 @@ TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict(
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = OrderedDict(
[
# Model for Token Classification mapping
(DistilBertConfig, TFDistilBertForTokenClassification),
(AlbertConfig, TFAlbertForTokenClassification),
(CamembertConfig, TFCamembertForTokenClassification),
......@@ -345,6 +356,7 @@ TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = OrderedDict(
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = OrderedDict(
[
# Model for Multiple Choice mapping
(CamembertConfig, TFCamembertForMultipleChoice),
(XLMConfig, TFXLMForMultipleChoice),
(XLMRobertaConfig, TFXLMRobertaForMultipleChoice),
......
# How to add a new model in 🤗 Transformers
This folder describes the process to add a new model in 🤗 Transformers and provide templates for the required files.
The library is designed to incorporate a variety of models and code bases. As such the process for adding a new model
usually mostly consists in copy-pasting to relevant original code in the various sections of the templates included in
the present repository.
One important point though is that the library has the following goals impacting the way models are incorporated:
- One specific feature of the API is the capability to run the model and tokenizer inline. The tokenization code thus
often have to be slightly adapted to allow for running in the python interpreter.
- the package is also designed to be as self-consistent and with a small and reliable set of packages dependencies. In
consequence, additional dependencies are usually not allowed when adding a model but can be allowed for the
inclusion of a new tokenizer (recent examples of dependencies added for tokenizer specificities include
`sentencepiece` and `sacremoses`). Please make sure to check the existing dependencies when possible before adding a
new one.
For a quick overview of the general philosphy of the library and its organization, please check the
[QuickStart section of the documentation](https://huggingface.co/transformers/philosophy.html).
# Typical workflow for including a model
Here an overview of the general workflow:
- [ ] Add model/configuration/tokenization classes.
- [ ] Add conversion scripts.
- [ ] Add tests and a @slow integration test.
- [ ] Document your model.
- [ ] Finalize.
Let's detail what should be done at each step.
## Adding model/configuration/tokenization classes
Here is the workflow for adding model/configuration/tokenization classes:
- [ ] Copy the python files from the present folder to the main folder and rename them, replacing `xxx` with your model
name.
- [ ] Edit the files to replace `XXX` (with various casing) with your model name.
- [ ] Copy-paste or create a simple configuration class for your model in the `configuration_...` file.
- [ ] Copy-paste or create the code for your model in the `modeling_...` files (PyTorch and TF 2.0).
- [ ] Copy-paste or create a tokenizer class for your model in the `tokenization_...` file.
## Adding conversion scripts
Here is the workflow for the conversion scripts:
- [ ] Copy the conversion script (`convert_...`) from the present folder to the main folder.
- [ ] Edit this script to convert your original checkpoint weights to the current pytorch ones.
## Adding tests:
Here is the workflow for the adding tests:
- [ ] Copy the python files from the `tests` sub-folder of the present folder to the `tests` subfolder of the main
folder and rename them, replacing `xxx` with your model name.
- [ ] Edit the tests files to replace `XXX` (with various casing) with your model name.
- [ ] Edit the tests code as needed.
## Documenting your model:
Here is the workflow for documentation:
- [ ] Make sure all your arguments are properly documented in your configuration and tokenizer.
- [ ] Most of the documentation of the models is automatically generated, you just have to make sure that
`XXX_START_DOCSTRING` contains an introduction to the model you're adding and a link to the original
article and that `XXX_INPUTS_DOCSTRING` contains all the inputs of your model.
- [ ] Create a new page `xxx.rst` in the folder `docs/source/model_doc` and add this file in `docs/source/index.rst`.
Make sure to check you have no sphinx warnings when building the documentation locally and follow our
[documentation guide](https://github.com/huggingface/transformers/tree/master/docs#writing-documentation---specification).
## Final steps
You can then finish the addition step by adding imports for your classes in the common files:
- [ ] Add import for all the relevant classes in `__init__.py`.
- [ ] Add your configuration in `configuration_auto.py`.
- [ ] Add your PyTorch and TF 2.0 model respectively in `modeling_auto.py` and `modeling_tf_auto.py`.
- [ ] Add your tokenizer in `tokenization_auto.py`.
- [ ] Add a link to your conversion script in the main conversion utility (in `commands/convert.py`)
- [ ] Edit the PyTorch to TF 2.0 conversion script to add your model in the `convert_pytorch_checkpoint_to_tf2.py`
file.
- [ ] Add a mention of your model in the doc: `README.md` and the documentation itself
in `docs/source/pretrained_models.rst`. Rune `make fix-copies` to update `docs/source/index.rst` with your changes.
- [ ] Upload the pretrained weights, configurations and vocabulary files.
- [ ] Create model card(s) for your models on huggingface.co. For those last two steps, check the
[model sharing documentation](https://huggingface.co/transformers/model_sharing.html).
# Using `cookiecutter` to generate models
This folder contains templates to generate new models that fit the current API and pass all tests. It generates
models in both PyTorch and TensorFlow, completes the `__init__.py` and auto-modeling files, and creates the
documentation.
## Usage
Using the `cookiecutter` utility requires to have all the `dev` dependencies installed. Let's first clone the
repository and install it in our environment:
```shell script
git clone https://github.com/huggingface/transformers
cd transformers
pip install -e ".[dev]"
```
Once the installation is done, you can use the CLI command `add-new-model` to generate your models:
```shell script
transformers-cli add-new-model
```
This should launch the `cookiecutter` package which should prompt you to fill in the configuration.
The `modelname` should be cased according to the plain text casing, i.e., BERT, RoBERTa, DeBERTa.
```
modelname [<ModelNAME>]:
uppercase_modelname [<MODEL_NAME>]:
lowercase_modelname [<model_name>]:
camelcase_modelname [<ModelName>]:
```
Fill in the `authors` with your team members:
```
authors [The HuggingFace Team]:
```
The checkpoint identifier is the checkpoint that will be used in the examples across the files. Put the name you wish,
as it will appear on the modelhub. Do not forget to include the organisation.
```
checkpoint_identifier [organisation/<model_name>-base-cased]:
```
The tokenizer should either be based on BERT if it behaves exactly like the BERT tokenizer, or a standalone otherwise.
```
Select tokenizer_type:
1 - Based on BERT
2 - Standalone
Choose from 1, 2 [1]:
```
<!---
Choose if your model is an encoder-decoder, or an encoder-only architecture.
If your model is an encoder-only architecture, the generated architecture will be based on the BERT model.
If your model is an encoder-decoder architecture, the generated architecture will be based on the BART model. You can,
of course, edit the files once the generation is complete.
```
Select is_encoder_decoder_model:
1 - True
2 - False
Choose from 1, 2 [1]:
```
-->
Once the command has finished, you should have a total of 7 new files spread across the repository:
```
docs/source/model_doc/<model_name>.rst
src/transformers/configuration_<model_name>.py
src/transformers/modeling_<model_name>.py
src/transformers/modeling_tf_<model_name>.py
src/transformers/tokenization_<model_name>.py
tests/test_modeling_<model_name>.py
tests/test_modeling_tf_<model_name>.py
```
You can run the tests to ensure that they all pass:
```
python -m pytest ./tests/test_*<model_name>*.py
```
Feel free to modify each file to mimic the behavior of your model.
⚠ You should be careful about the classes preceded by the following line:️
```python
# Copied from transformers.[...]
```
This line ensures that the copy does not diverge from the source. If it *should* diverge, because the implementation
is different, this line needs to be deleted. If you don't delete this line and run `make fix-copies`,
your changes will be overwritten.
Once you have edited the files to fit your architecture, simply re-run the tests (and edit them if a change
is needed!) afterwards to make sure everything works as expected.
Once the files are generated and you are happy with your changes, here's a checklist to ensure that your contribution
will be merged quickly:
- You should run the `make fixup` utility to fix the style of the files and to ensure the code quality meets the
library's standards.
- You should complete the documentation file (`docs/source/model_doc/<model_name>.rst`) so that your model may be
usable.
\ No newline at end of file
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert XXX checkpoint."""
import argparse
import logging
import torch
from transformers import XxxConfig, XxxForPreTraining, load_tf_weights_in_xxx
logging.basicConfig(level=logging.INFO)
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path):
# Initialise PyTorch model
config = XxxConfig.from_json_file(config_file)
print("Building PyTorch model from configuration: {}".format(str(config)))
model = XxxForPreTraining(config)
# Load weights from tf checkpoint
load_tf_weights_in_xxx(model, config, tf_checkpoint_path)
# Save pytorch-model
print("Save PyTorch model to {}".format(pytorch_dump_path))
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
{
"modelname": "{{cookiecutter.modelname}}",
"uppercase_modelname": "{{cookiecutter.uppercase_modelname}}",
"lowercase_modelname": "{{cookiecutter.lowercase_modelname}}",
"camelcase_modelname": "{{cookiecutter.camelcase_modelname}}",
"authors": "{{cookiecutter.authors}}",
"checkpoint_identifier": "{{cookiecutter.checkpoint_identifier}}",
"tokenizer_type": "{{cookiecutter.tokenizer_type}}",
"generate_tensorflow_and_pytorch": "{{cookiecutter.generate_tensorflow_and_pytorch}}"
}
# coding=utf-8
# Copyright 2010, XXX authors
# Copyright {{cookiecutter.authors}} and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -12,97 +12,118 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XXX model configuration """
import logging
from typing import Callable, Union
""" {{cookiecutter.modelname}} model configuration """
from .configuration_utils import PretrainedConfig
from .utils import logging
logger = logging.getLogger(__name__)
logger = logging.get_logger(__name__)
XXX_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"xxx-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-base-uncased-config.json",
"xxx-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-large-uncased-config.json",
{{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/config.json",
# See all {{cookiecutter.modelname}} models at https://huggingface.co/models?filter={{cookiecutter.lowercase_modelname}}
}
class XxxConfig(PretrainedConfig):
class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.XxxModel` or a
:class:`~transformers.TFXxxModel`. It is used to instantiate a XXX model according to the specified
arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar
configuration to that of the XXX `xxx-base-uncased <https://huggingface.co/xxx/xxx-base-uncased>`__ architecture.
This is the configuration class to store the configuration of a :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model`.
It is used to instantiate an {{cookiecutter.modelname}} model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
the {{cookiecutter.modelname}} `{{cookiecutter.checkpoint_identifier}} <https://huggingface.co/{{cookiecutter.checkpoint_identifier}}>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used
to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig`
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used
to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig`
for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 30522):
Vocabulary size of the XXX model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.XxxModel` or
:class:`~transformers.TFXxxModel`.
Vocabulary size of the {{cookiecutter.modelname}} model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model` or
:class:`~transformers.TF{{cookiecutter.camelcase_modelname}}Model`.
Vocabulary size of the model. Defines the different tokens that
can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model`.
hidden_size (:obj:`int`, `optional`, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
intermediate_size (:obj:`int`, `optional`, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler.
If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"swish"` and :obj:`"gelu_new"` are supported.
If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` are supported.
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with.
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.XxxModel` or
:class:`~transformers.TFXxxModel`.
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model` or
:class:`~transformers.TF{{cookiecutter.camelcase_modelname}}Model`.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the :obj:`truncated_normal_initializer` for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-5):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers.
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`True`, use gradient checkpointing to save memory at the expense of slower backward pass.
kwargs:
Additional arguments for common configurations, passed to :class:`~transformers.PretrainedConfig`.
Example::
>>> from transformers import {{cookiecutter.camelcase_modelname}}Model, {{cookiecutter.camelcase_modelname}}Config
>>> # Initializing a {{cookiecutter.modelname}} {{cookiecutter.checkpoint_identifier}} style configuration
>>> configuration = {{cookiecutter.camelcase_modelname}}Config()
>>> # Initializing a model from the {{cookiecutter.checkpoint_identifier}} style configuration
>>> model = {{cookiecutter.camelcase_modelname}}Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "xxx"
model_type = "{{cookiecutter.lowercase_modelname}}"
def __init__(
self,
vocab_size: int = 50257,
hidden_size: int = 1024,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
hidden_act: Union[str, Callable] = "gelu",
hidden_dropout_prob: float = 0.1,
attention_probs_dropout_prob: float = 0.1,
max_position_embeddings: int = 512,
type_vocab_size: int = 2,
initializer_range: float = 0.02,
layer_norm_epsilon: float = 1e-5,
gradient_checkpointing: bool = False,
vocab_size=30522,
hidden_size=768,
is_encoder_decoder=False,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs
):
super().__init__(**kwargs)
super().__init__(
pad_token_id=pad_token_id,
is_encoder_decoder=is_encoder_decoder,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_epsilon = layer_norm_epsilon
self.gradient_checkpointing = gradient_checkpointing
self.layer_norm_eps = layer_norm_eps
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import {{cookiecutter.camelcase_modelname}}Config, is_tf_available
from transformers.testing_utils import require_tf, slow
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
if is_tf_available():
import tensorflow as tf
from transformers.modeling_tf_{{cookiecutter.lowercase_modelname}} import (
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM,
TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
TF{{cookiecutter.camelcase_modelname}}ForTokenClassification,
TF{{cookiecutter.camelcase_modelname}}Model,
)
class TF{{cookiecutter.camelcase_modelname}}ModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = {{cookiecutter.camelcase_modelname}}Config(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TF{{cookiecutter.camelcase_modelname}}Model(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TF{{cookiecutter.camelcase_modelname}}ForMaskedLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TF{{cookiecutter.camelcase_modelname}}ForTokenClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class TF{{cookiecutter.camelcase_modelname}}ModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
TF{{cookiecutter.camelcase_modelname}}Model,
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM,
TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
TF{{cookiecutter.camelcase_modelname}}ForTokenClassification,
TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
)
if is_tf_available()
else ()
)
def setUp(self):
self.model_tester = TF{{cookiecutter.camelcase_modelname}}ModelTester(self)
self.config_tester = ConfigTester(self, config_class={{cookiecutter.camelcase_modelname}}Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model = TF{{cookiecutter.camelcase_modelname}}Model.from_pretrained("{{cookiecutter.checkpoint_identifier}}")
self.assertIsNotNone(model)
# coding=utf-8
# Copyright 2018 XXX Authors.
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -12,61 +12,56 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch {{cookiecutter.modelname}} model. """
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from transformers.testing_utils import require_torch, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
if is_torch_available():
from transformers import (
AutoModelForMaskedLM,
AutoTokenizer,
XxxConfig,
XxxForMaskedLM,
XxxForMultipleChoice,
XxxForQuestionAnswering,
XxxForSequenceClassification,
XxxForTokenClassification,
XxxModel,
{{cookiecutter.camelcase_modelname}}Config,
{{cookiecutter.camelcase_modelname}}ForMaskedLM,
{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}ForTokenClassification,
{{cookiecutter.camelcase_modelname}}Model,
)
from transformers.file_utils import cached_property
#
from transformers.modeling_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST
class XxxModelTester:
"""You can also import this e.g from .test_modeling_bart import BartModelTester """
class {{cookiecutter.camelcase_modelname}}ModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
......@@ -96,7 +91,7 @@ class XxxModelTester:
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
......@@ -110,7 +105,7 @@ class XxxModelTester:
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = XxxConfig(
config = {{cookiecutter.camelcase_modelname}}Config(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
......@@ -121,6 +116,7 @@ class XxxModelTester:
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
return_dict=True,
)
......@@ -128,30 +124,29 @@ class XxxModelTester:
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XxxModel(config=config)
model = {{cookiecutter.camelcase_modelname}}Model(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XxxForMaskedLM(config=config)
model = {{cookiecutter.camelcase_modelname}}ForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XxxForQuestionAnswering(config=config)
model = {{cookiecutter.camelcase_modelname}}ForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
......@@ -165,30 +160,30 @@ class XxxModelTester:
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = XxxForSequenceClassification(config)
model = {{cookiecutter.camelcase_modelname}}ForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = XxxForTokenClassification(config=config)
model = {{cookiecutter.camelcase_modelname}}ForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = XxxForMultipleChoice(config=config)
model = {{cookiecutter.camelcase_modelname}}ForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
......@@ -218,17 +213,24 @@ class XxxModelTester:
@require_torch
class XxxModelTest(ModelTesterMixin, unittest.TestCase):
class {{cookiecutter.camelcase_modelname}}ModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(XxxModel, XxxForMaskedLM, XxxForQuestionAnswering, XxxForSequenceClassification, XxxForTokenClassification)
(
{{cookiecutter.camelcase_modelname}}Model,
{{cookiecutter.camelcase_modelname}}ForMaskedLM,
{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}ForTokenClassification,
)
if is_torch_available()
else ()
)
def setUp(self):
self.model_tester = XxxModelTester(self)
self.config_tester = ConfigTester(self, config_class=XxxConfig, hidden_size=37)
self.model_tester = {{cookiecutter.camelcase_modelname}}ModelTester(self)
self.config_tester = ConfigTester(self, config_class={{cookiecutter.camelcase_modelname}}Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
......@@ -241,6 +243,10 @@ class XxxModelTest(ModelTesterMixin, unittest.TestCase):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
......@@ -253,55 +259,10 @@ class XxxModelTest(ModelTesterMixin, unittest.TestCase):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs)
@slow
def test_lm_outputs_same_as_reference_model(self):
"""Write something that could help someone fixing this here."""
checkpoint_path = "XXX/bart-large"
model = self.big_model
tokenizer = AutoTokenizer.from_pretrained(
checkpoint_path
) # same with AutoTokenizer (see tokenization_auto.py). This is not mandatory
# MODIFY THIS DEPENDING ON YOUR MODELS RELEVANT TASK.
batch = tokenizer(["I went to the <mask> yesterday"]).to(torch_device)
desired_mask_result = tokenizer.decode("store") # update this
logits = model(**batch).logits
masked_index = (batch.input_ids == self.tokenizer.mask_token_id).nonzero()
assert model.num_parameters() == 175e9 # a joke
mask_entry_logits = logits[0, masked_index.item(), :]
probs = mask_entry_logits.softmax(dim=0)
_, predictions = probs.topk(1)
self.assertEqual(tokenizer.decode(predictions), desired_mask_result)
@cached_property
def big_model(self):
"""Cached property means this code will only be executed once."""
checkpoint_path = "XXX/bart-large"
model = AutoModelForMaskedLM.from_pretrained(checkpoint_path).to(
torch_device
) # test whether AutoModel can determine your model_class from checkpoint name
if torch_device == "cuda":
model.half()
# optional: do more testing! This will save you time later!
@slow
def test_that_XXX_can_be_used_in_a_pipeline(self):
"""We can use self.big_model here without calling __init__ again."""
pass
def test_XXX_loss_doesnt_change_if_you_add_padding(self):
pass
def test_XXX_bad_args(self):
pass
def test_model_from_pretrained(self):
for model_name in {{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = {{cookiecutter.camelcase_modelname}}Model.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_XXX_backward_pass_reduces_loss(self):
"""Test loss/gradients same as reference implementation, for example."""
pass
@require_torch_gpu
def test_large_inputs_in_fp16_dont_cause_overflow(self):
pass
## This file is made so that specific statements may be copied inside existing files. This is useful to copy
## import statements in __init__.py, or to complete model lists in the AUTO files.
##
## It is to be used as such:
## Put '# To replace in: "FILE_PATH"' in order to indicate the contents will be copied in the file at path FILE_PATH
## Put '# Below: "STATEMENT"' in order to copy the contents below **the first occurence** of that line in the file at FILE_PATH
## Put '# Replace with:' followed by the lines containing the content to define the content
## End a statement with '# End.'. If starting a new statement without redefining the FILE_PATH, it will continue pasting
## content in that file.
##
## Put '## COMMENT' to comment on the file.
# To replace in: "src/transformers/__init__.py"
# Below: "if is_torch_available():" if generating PyTorch
# Replace with:
from .modeling_{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
{{cookiecutter.camelcase_modelname}}ForMaskedLM,
{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}ForTokenClassification,
{{cookiecutter.camelcase_modelname}}Layer,
{{cookiecutter.camelcase_modelname}}Model,
{{cookiecutter.camelcase_modelname}}PreTrainedModel,
load_tf_weights_in_{{cookiecutter.lowercase_modelname}},
)
# End.
# Below: "if is_tf_available():" if generating TensorFlow
# Replace with:
from .modeling_tf_{{cookiecutter.lowercase_modelname}} import (
TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM,
TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
TF{{cookiecutter.camelcase_modelname}}ForTokenClassification,
TF{{cookiecutter.camelcase_modelname}}Layer,
TF{{cookiecutter.camelcase_modelname}}Model,
TF{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
# End.
# Below: "from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig"
# Replace with:
from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP, {{cookiecutter.camelcase_modelname}}Config
# End.
# To replace in: "src/transformers/configuration_auto.py"
# Below: "# Add configs here"
# Replace with:
("{{cookiecutter.lowercase_modelname}}", {{cookiecutter.camelcase_modelname}}Config),
# End.
# Below: "# Add archive maps here"
# Replace with:
{{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP,
# End.
# Below: "from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig",
# Replace with:
from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP, {{cookiecutter.camelcase_modelname}}Config
# End.
# Below: "# Add full (and cased) model names here"
# Replace with:
("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}"),
# End.
# To replace in: "src/transformers/modeling_auto.py" if generating PyTorch
# Below: "from .configuration_auto import ("
# Replace with:
{{cookiecutter.camelcase_modelname}}Config,
# End.
# Below: "# Add modeling imports here"
# Replace with:
from .modeling_{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.camelcase_modelname}}ForMaskedLM,
{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}ForTokenClassification,
{{cookiecutter.camelcase_modelname}}Model,
)
# End.
# Below: "# Base model mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}Model),
# End.
# Below: "# Model with LM heads mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMaskedLM),
# End.
# Below: "# Model for Masked LM mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMaskedLM),
# End.
# Below: "# Model for Sequence Classification mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForSequenceClassification),
# End.
# Below: "# Model for Question Answering mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering),
# End.
# Below: "# Model for Token Classification mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForTokenClassification),
# End.
# Below: "# Model for Multiple Choice mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMultipleChoice),
# End.
# To replace in: "src/transformers/modeling_tf_auto.py" if generating TensorFlow
# Below: "from .configuration_auto import ("
# Replace with:
{{cookiecutter.camelcase_modelname}}Config,
# End.
# Below: "# Add modeling imports here"
# Replace with:
from .modeling_tf_{{cookiecutter.lowercase_modelname}} import (
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM,
TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
TF{{cookiecutter.camelcase_modelname}}ForTokenClassification,
TF{{cookiecutter.camelcase_modelname}}Model,
)
# End.
# Below: "# Base model mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}Model),
# End.
# Below: "# Model with LM heads mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM),
# End.
# Below: "# Model for Masked LM mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM),
# End.
# Below: "# Model for Sequence Classification mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification),
# End.
# Below: "# Model for Question Answering mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering),
# End.
# Below: "# Model for Token Classification mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForTokenClassification),
# End.
# Below: "# Model for Multiple Choice mapping"
# Replace with:
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice),
# End.
{{cookiecutter.uppercase_modelname}}
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The {{cookiecutter.modelname}} model was proposed in `<INSERT PAPER NAME HERE>
<<INSERT PAPER LINK HERE>>`__ by <INSERT AUTHORS HERE>. <INSERT SHORT SUMMARY HERE>
The abstract from the paper is the following:
*<INSERT PAPER ABSTRACT HERE>*
Tips:
<INSERT TIPS ABOUT MODEL HERE>
{{cookiecutter.camelcase_modelname}}Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}Config
:members:
{{cookiecutter.camelcase_modelname}}Tokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}Tokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
{{cookiecutter.camelcase_modelname}}TokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}TokenizerFast
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
{% if "PyTorch" in cookiecutter.generate_tensorflow_and_pytorch -%}
{{cookiecutter.camelcase_modelname}}Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}Model
:members: forward
{{cookiecutter.camelcase_modelname}}ForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForMaskedLM
:members: forward
{{cookiecutter.camelcase_modelname}}ForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForSequenceClassification
:members: forward
{{cookiecutter.camelcase_modelname}}ForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForMultipleChoice
:members:
{{cookiecutter.camelcase_modelname}}ForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForTokenClassification
:members: forward
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
:members: forward
{% endif -%}
{% if "TensorFlow" in cookiecutter.generate_tensorflow_and_pytorch -%}
TF{{cookiecutter.camelcase_modelname}}Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TF{{cookiecutter.camelcase_modelname}}Model
:members: call
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TF{{cookiecutter.camelcase_modelname}}ForMaskedLM
:members: call
TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification
:members: call
TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice
:members: call
TF{{cookiecutter.camelcase_modelname}}ForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TF{{cookiecutter.camelcase_modelname}}ForTokenClassification
:members: call
TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
:members: call
{% endif -%}
{
"modelname": "BrandNewBERT",
"uppercase_modelname": "BRAND_NEW_BERT",
"lowercase_modelname": "brand_new_bert",
"camelcase_modelname": "BrandNewBert",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "brand-new-bert-base-cased",
"tokenizer_type": ["Based on BERT", "Standalone"],
"generate_tensorflow_and_pytorch": ["PyTorch & TensorFlow", "PyTorch", "TensorFlow"]
}
\ No newline at end of file
{
"modelname": "EncoderBERT",
"uppercase_modelname": "ENCODER_BERT",
"lowercase_modelname": "encoder_bert",
"camelcase_modelname": "EncoderBert",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "brand-new-bert-base-cased",
"tokenizer_type": "Based on BERT",
"generate_tensorflow_and_pytorch": "PyTorch & TensorFlow"
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment