modeling_openai.py 38.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
import json
thomwolf's avatar
thomwolf committed
22
import logging
23
24
import math
import os
thomwolf's avatar
thomwolf committed
25
26
import sys
from io import open
thomwolf's avatar
thomwolf committed
27
28
29

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
30
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
31
32
from torch.nn.parameter import Parameter

33
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
34
                             PreTrainedModel, prune_conv1d_layer, SequenceSummary)
thomwolf's avatar
thomwolf committed
35
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
38
logger = logging.getLogger(__name__)

39
40
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
41

42

43
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
44
45
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
46
47
    import re
    import numpy as np
48
49
50
51
52
53

    if '.ckpt' in openai_checkpoint_folder_path:
        openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)

    logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))

54
55
56
57
58
59
60
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
61
    # This was used when we had a single embedding matrix for positions and tokens
62
63
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
64
65
66
    init_params = [arr.squeeze() for arr in init_params]

    try:
67
68
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
69
    except AssertionError as e:
70
71
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
72
73
        raise

74
75
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
76
    names.pop(0)
77
78
    # Pop position and token embedding arrays
    init_params.pop(0)
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
117
118
119
120
121
122
123
124
125

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


126
127
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
128

129
class OpenAIGPTConfig(PretrainedConfig):
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    """
    Configuration class to store the configuration of a `OpenAIGPTModel`.

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
        n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
        n_positions: Number of positional embeddings.
        n_ctx: Size of the causal mask (usually same as n_positions).
        n_embd: Dimensionality of the embeddings and hidden states.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        afn: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        resid_pdrop: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        attn_pdrop: The dropout ratio for the attention
            probabilities.
        embd_pdrop: The dropout ratio for the embeddings.
        layer_norm_epsilon: epsilon to use in the layer norm layers
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
153
    """
154
    pretrained_config_archive_map = OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP
155
156
157
158
159

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
160
        n_positions=512,
161
162
163
164
165
166
167
168
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
169
        layer_norm_epsilon=1e-5,
170
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
171
        predict_special_tokens=True,
thomwolf's avatar
thomwolf committed
172
173

        num_labels=1,
thomwolf's avatar
thomwolf committed
174
175
176
        summary_type='token_ids',
        summary_use_proj=True,
        summary_activation=None,
thomwolf's avatar
thomwolf committed
177
        summary_proj_to_labels=True,
178
        summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
179
        **kwargs
180
    ):
thomwolf's avatar
thomwolf committed
181
182
        """Constructs OpenAIGPTConfig.
        """
thomwolf's avatar
thomwolf committed
183
184
        super(OpenAIGPTConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
185
186
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
187
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
188
189
190
191
192
193
194
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
195
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
196
197
198
199
200
201
202
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
203
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
204
            self.initializer_range = initializer_range
205
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
206
207

            self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
208
209
210
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
211
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
212
            self.summary_proj_to_labels = summary_proj_to_labels
thomwolf's avatar
thomwolf committed
213
        else:
214
215
216
217
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
218
219

    @property
220
221
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
222

thomwolf's avatar
thomwolf committed
223
224
225
226
227
228
229
230
231
232
233
234
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
235
236

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
237
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
238
239
240
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
241
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
242
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
243
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
244
245
        self.split_size = n_state
        self.scale = scale
246

thomwolf's avatar
thomwolf committed
247
        self.output_attentions = config.output_attentions
248

249
250
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
251
252
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
253

254
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
255
256
        if len(heads) == 0:
            return
257
258
259
260
261
262
263
264
265
266
267
268
269
270
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
271
272
273
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
274
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
275
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
276
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
277
278
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
279
280
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
281
282
283
284
285

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
286
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
287
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
288
289
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

304
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
305
306
307
308
309
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
310

thomwolf's avatar
thomwolf committed
311
312
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
313

thomwolf's avatar
thomwolf committed
314
315
316
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
317
318
319

        outputs = [a] + attn_outputs[1:]
        return outputs  # a, (attentions)
thomwolf's avatar
thomwolf committed
320
321
322


class MLP(nn.Module):
323
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
324
        super(MLP, self).__init__()
325
        nx = config.n_embd
326
327
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
328
329
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
330
331
332
333
334
335
336
337

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
338
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
339
        super(Block, self).__init__()
340
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
341
        self.attn = Attention(nx, n_ctx, config, scale)
342
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
343
        self.mlp = MLP(4 * nx, config)
344
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
345

346
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
347
348
349
        attn_outputs = self.attn(x, head_mask=head_mask)
        a = attn_outputs[0]

thomwolf's avatar
thomwolf committed
350
351
352
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
353
354
355

        outputs = [h] + attn_outputs[1:]
        return outputs
thomwolf's avatar
thomwolf committed
356
357


thomwolf's avatar
thomwolf committed
358
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
359
360
    """ Language Model Head for the transformer """

361
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
362
        super(OpenAIGPTLMHead, self).__init__()
363
        self.n_embd = config.n_embd
364
365
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
366
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
367
368
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
369
370
        self.set_embeddings_weights(model_embeddings_weights)

371
372
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
373
374
375
376
377

        if self.torchscript:
            self.decoder.weight = nn.Parameter(model_embeddings_weights.clone())
        else:
            self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
378

thomwolf's avatar
thomwolf committed
379
380
    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
381
382
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
383
384
385
        return lm_logits


386
class OpenAIGPTPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
387
388
389
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
390
    config_class = OpenAIGPTConfig
391
    pretrained_model_archive_map = OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
392
393
    load_tf_weights = load_tf_weights_in_openai_gpt
    base_model_prefix = "transformer"
394

395
396
397
    def __init__(self, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
398
399
400
    def init_weights(self, module):
        """ Initialize the weights.
        """
401
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
402
403
404
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
405
406
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
407
408
409
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
410

thomwolf's avatar
thomwolf committed
411
    @classmethod
412
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
413
414
415
416
417
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
418
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
419
420
                - a str with the name of a pre-trained model to load selected in the list of:
                - a path or url to a pretrained model archive containing:
421
                    . `config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
422
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
423
                - a path or url to a pretrained model archive containing:
424
                    . `config.json` a configuration file for the model
425
426
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
427
428
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
429
            *inputs, **kwargs: additional input for the specific OpenAI-GPT class
thomwolf's avatar
thomwolf committed
430
        """
431
432
433
434
        num_special_tokens = kwargs.get('num_special_tokens', None)
        kwargs.pop('num_special_tokens', None)

        model = PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
435

thomwolf's avatar
thomwolf committed
436
        # Add additional embeddings for special tokens if needed
437
        # This step also make sure we are still sharing the output and input embeddings after loading weights
438
        model.set_num_special_tokens(num_special_tokens)
thomwolf's avatar
thomwolf committed
439
        return model
thomwolf's avatar
thomwolf committed
440
441


thomwolf's avatar
thomwolf committed
442
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
443
444
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

445
446
447
    OpenAI GPT uses a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained, such as: [SEP], [CLS]...

448
    Special tokens need to be trained during the fine-tuning if you use them.
449
450
451
452
453
    The number of special embeddings can be controlled using the ``set_num_special_tokens(num_special_tokens)`` function.

    The embeddings are ordered as follow in the token embeddings matrix:

    ::
454

455
456
457
458
459
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
460
         config.vocab_size + config.n_special - 1]                  ______________________
461

462
463
464
465
    where ``total_tokens_embeddings`` can be obtained as ``config.total_tokens_embeddings`` and is:

    ::

466
        total_tokens_embeddings = config.vocab_size + config.n_special
467

468
469
470
    You should use the associated indices to index the embeddings.

    Args:
471
472
473
474
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
475
476


477
    Example::
478

479
480
        config = modeling_openai.OpenAIGPTConfig()
        model = modeling_openai.OpenAIGPTModel(config)
481
    """
482

thomwolf's avatar
thomwolf committed
483
    def __init__(self, config):
484
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
485
486
487
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

thomwolf's avatar
thomwolf committed
488
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
489
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
490
        self.drop = nn.Dropout(config.embd_pdrop)
491
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
492

thomwolf's avatar
thomwolf committed
493
494
        self.apply(self.init_weights)

495
    def set_num_special_tokens(self, num_special_tokens=None):
496
497
498
499
500
501
502
503
504
505
506
        """
        Update input embeddings with new embedding matrice if needed

        TODO

        Args:
            num_special_tokens:

        Returns:

        """
507
        if num_special_tokens is None or self.config.n_special == num_special_tokens:
508
            return
thomwolf's avatar
thomwolf committed
509
510
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
511
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
512
        old_embed = self.tokens_embed
513
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
514
        self.tokens_embed.to(old_embed.weight.device)
515
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
516
517
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
518

thomwolf's avatar
thomwolf committed
519
    def _prune_heads(self, heads_to_prune):
520
521
522
523
524
525
526
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
                were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            ``hidden_states``, a list of all the encoded-hidden-states in the model (length of the list is number
            of layers + 1 for the output of the embeddings)
            as ``torch.FloatTensor`` of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

            hidden_states = model(input_ids)
            # or
            hidden_states = model.forward(input_ids)
        """
thomwolf's avatar
thomwolf committed
558
        if position_ids is None:
559
560
561
562
563
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
564
565
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

566
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
567
        # 1.0 in head_mask indicate we keep the head
568
        # attention_probs has shape bsz x n_heads x N x N
569
        # head_mask has shape n_layer x batch x n_heads x N x N
570
571
        if head_mask is not None:
            if head_mask.dim() == 1:
572
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
573
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
574
            elif head_mask.dim() == 2:
575
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
576
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
577
578
        else:
            head_mask = [None] * self.config.n_layer
579

thomwolf's avatar
thomwolf committed
580
581
582
583
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

584
585
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
586
587
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
588
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
589
590
591
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
592
593
        hidden_states = self.drop(hidden_states)

594
595
        output_shape = input_shape + (hidden_states.size(-1),)

596
597
        all_attentions = ()
        all_hidden_states = ()
598
        for i, block in enumerate(self.h):
thomwolf's avatar
thomwolf committed
599
            if self.output_hidden_states:
600
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
601

602
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
603
            hidden_states = outputs[0]
thomwolf's avatar
thomwolf committed
604
            if self.output_attentions:
605
                all_attentions = all_attentions + (outputs[1],)
thomwolf's avatar
thomwolf committed
606
607
608

        # Add last layer
        if self.output_hidden_states:
609
            all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
610

611
        outputs = (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
612
        if self.output_hidden_states:
613
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
614
        if self.output_attentions:
615
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
616
        return outputs  # last hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
617

618

thomwolf's avatar
thomwolf committed
619
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
620
621
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

622
623
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
624
625
626
627
628
629
    Special tokens need to be trained during the fine-tuning if you use them. The number of special embeddings
    can be controlled using the ``set_num_special_tokens(num_special_tokens)`` function.

    The embeddings are ordered as follow in the token embeddings matrix:

    ::
630

631
632
633
634
635
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
636
         config.vocab_size + config.n_special - 1]                  ______________________
637

638
639
640
641
    where ``total_tokens_embeddings`` can be obtained as ``config.total_tokens_embeddings`` and is:

    ::

642
        total_tokens_embeddings = config.vocab_size + config.n_special
643

644
645
646
    You should use the associated indices to index the embeddings.

    Args:
647
648
649
650
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
651
652


653
    Example::
654

655
656
        config = modeling_openai.OpenAIGPTConfig()
        model = modeling_openai.OpenAIGPTLMHeadModel(config)
657
    """
658

thomwolf's avatar
thomwolf committed
659
    def __init__(self, config):
660
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
661
        self.transformer = OpenAIGPTModel(config)
662
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
663
664
        self.apply(self.init_weights)

665
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
666
667
668
669
        """
        Update input and output embeddings with new embedding matrix. Make sure we are sharing the embeddings
        TODO

670
        """
671
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
672
        self.transformer.set_num_special_tokens(num_special_tokens)
673
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
674

675
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None):
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
                were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `lm_labels`: optional language modeling labels: ``torch.LongTensor`` of shape [batch_size, sequence_length]
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if ``lm_labels`` is not ``None``, outputs the language modeling loss. Otherwise, outputs ``lm_logits``,
            the language modeling logits as a ``torch.FloatTensor`` of size [batch_size, sequence_length,
            total_tokens_embeddings] (or more generally [d_1, ..., d_n, total_tokens_embeddings] where d_1 ... d_n are
            the dimension of input_ids)

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

            lm_logits = model(input_ids)
            # or
            lm_logits = model.forward(input_ids)
        """
thomwolf's avatar
thomwolf committed
710
711
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
712
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
713

714
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
715
        if lm_labels is not None:
716
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
717
718
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
719
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
720
            loss_fct = CrossEntropyLoss(ignore_index=-1)
721
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
722
                            shift_labels.view(-1))
723
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
724
725

        return outputs  # (loss), lm_logits, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
726

727

thomwolf's avatar
thomwolf committed
728
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
729
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
730

731
732
733
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
734
735
736
737
738
739
    The number of special embeddings can be controlled using the ``set_num_special_tokens(num_special_tokens)``
    function.

    The embeddings are ordered as follow in the token embeddings matrix:

    ::
740

741
742
743
744
745
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
746
         config.vocab_size + config.n_special - 1]                  ______________________
747

748
749
750
751
    where ``total_tokens_embeddings`` can be obtained as ``config.total_tokens_embeddings`` and is:

    ::

752
        total_tokens_embeddings = config.vocab_size + config.n_special
753

754
    You should use the associate indices to index the embeddings.
755

756
    Args:
757
758
759
760
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
761

762
763
764
765
    Example::

        config = modeling_openai.OpenAIGPTConfig()
        model = modeling_openai.OpenAIGPTDoubleHeadsModel(config)
766
    """
767

thomwolf's avatar
thomwolf committed
768
    def __init__(self, config):
769
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
770

thomwolf's avatar
thomwolf committed
771
        self.transformer = OpenAIGPTModel(config)
772
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
773
774
        self.multiple_choice_head = SequenceSummary(config)

thomwolf's avatar
thomwolf committed
775
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
776

777
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
778
779
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
780
            TODO
781
        """
782
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
783
        self.transformer.set_num_special_tokens(num_special_tokens)
784
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
785

thomwolf's avatar
thomwolf committed
786
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
787
                position_ids=None, head_mask=None):
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length] with the BPE token
                indices selected in the range [0, total_tokens_embeddings[
            `mc_token_ids`: a ``torch.LongTensor`` of shape [batch_size, num_choices] with the index of the token from
                which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `lm_labels`: optional language modeling labels: ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length]
                with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., total_tokens_embeddings]
            `multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size]
                with indices selected in [0, ..., num_choices].
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if ``lm_labels`` and ``multiple_choice_labels`` are not ``None``, outputs a tuple of losses with the
            language modeling loss and the multiple choice loss. Otherwise, returns a
            ``tuple(lm_logits, multiple_choice_logits)``.

                ``lm_logits`` are the language modeling logits as a ``torch.FloatTensor`` of size
                [batch_size, num_choices, sequence_length, total_tokens_embeddings]

                ``multiple_choice_logits``: the multiple choice logits as a ``torch.FloatTensor`` of
                size [batch_size, num_choices]

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
            mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)

            lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
            # or
            lm_logits, multiple_choice_logits = model.forward(input_ids, mc_token_ids)
        """
thomwolf's avatar
thomwolf committed
832
833
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
834

thomwolf's avatar
thomwolf committed
835
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
836
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
837

838
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
839
840
841
842
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
843
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
844
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
845
846
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
847
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
848
849
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
850
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
851
852

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions)