modeling_gpt2.py 37.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
26
27
28
29
30
31
32
import collections
import json
import logging
import math
import os
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

33
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
thomwolf's avatar
thomwolf committed
34
                          PreTrainedModel, prune_conv1d_layer, SequenceSummary)
thomwolf's avatar
thomwolf committed
35
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
36
37
38

logger = logging.getLogger(__name__)

39
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
40
                                "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin"}
41
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json",
thomwolf's avatar
thomwolf committed
42
                                 "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json"}
thomwolf's avatar
thomwolf committed
43

44
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
thomwolf's avatar
thomwolf committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
65
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
66
67

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
68
        name = name[6:]  # skip "model/"
thomwolf's avatar
thomwolf committed
69
70
71
        name = name.split('/')
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
72
73
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
thomwolf's avatar
thomwolf committed
74
75
76
77
78
79
            else:
                l = [m_name]
            if l[0] == 'w' or l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
thomwolf's avatar
thomwolf committed
80
81
82
            elif l[0] == 'wpe' or l[0] == 'wte':
                pointer = getattr(pointer, l[0])
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


102
class GPT2Config(PretrainedConfig):
thomwolf's avatar
thomwolf committed
103
    """Configuration class to store the configuration of a `GPT2Model`.
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
        n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
        n_positions: Number of positional embeddings.
        n_ctx: Size of the causal mask (usually same as n_positions).
        n_embd: Dimensionality of the embeddings and hidden states.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        layer_norm_epsilon: epsilon to use in the layer norm layers
        resid_pdrop: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        attn_pdrop: The dropout ratio for the attention
            probabilities.
        embd_pdrop: The dropout ratio for the embeddings.
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
123
    """
124
    pretrained_config_archive_map = GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
125
126
127

    def __init__(
        self,
thomwolf's avatar
thomwolf committed
128
        vocab_size_or_config_json_file=50257,
thomwolf's avatar
thomwolf committed
129
        n_special=0,
thomwolf's avatar
thomwolf committed
130
131
132
133
134
        n_positions=1024,
        n_ctx=1024,
        n_embd=768,
        n_layer=12,
        n_head=12,
135
136
137
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
thomwolf's avatar
thomwolf committed
138
139
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
140
        predict_special_tokens=True,
thomwolf's avatar
thomwolf committed
141
142

        num_labels=1,
thomwolf's avatar
thomwolf committed
143
144
145
        summary_type='token_ids',
        summary_use_proj=True,
        summary_activation=None,
thomwolf's avatar
thomwolf committed
146
        summary_proj_to_labels=True,
147
        summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
148
        **kwargs
thomwolf's avatar
thomwolf committed
149
150
151
152
153
    ):
        """Constructs GPT2Config.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
thomwolf's avatar
thomwolf committed
154
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
155
156
157
158
159
160
161
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            layer_norm_epsilon: epsilon to use in the layer norm layers
162
163
164
165
166
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
thomwolf's avatar
thomwolf committed
167
168
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
169
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
170
        """
thomwolf's avatar
thomwolf committed
171
172
        super(GPT2Config, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
173
174
175
176
177
178
179
180
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
181
            self.n_special = n_special
thomwolf's avatar
thomwolf committed
182
183
184
185
186
            self.n_ctx = n_ctx
            self.n_positions = n_positions
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
187
188
189
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
thomwolf's avatar
thomwolf committed
190
191
            self.layer_norm_epsilon = layer_norm_epsilon
            self.initializer_range = initializer_range
192
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
193
194

            self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
195
196
197
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
198
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
199
            self.summary_proj_to_labels = summary_proj_to_labels
thomwolf's avatar
thomwolf committed
200
201
202
203
204
205
        else:
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )

thomwolf's avatar
thomwolf committed
206
207
208
209
    @property
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special

thomwolf's avatar
thomwolf committed
210
211
212
213
214
215
216
217
218
219
220
221
222
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer


thomwolf's avatar
thomwolf committed
223
224

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
225
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
226
        super(Attention, self).__init__()
thomwolf's avatar
thomwolf committed
227
228
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
229
230
231
232
233
234
235
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
236

thomwolf's avatar
thomwolf committed
237
238
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
239
240
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
241

242
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
243
244
        if len(heads) == 0:
            return
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
259
260
261
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
262
263
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns-nd:ns, :ns]
264
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
265
266

        w = nn.Softmax(dim=-1)(w)
267
        w = self.attn_dropout(w)
268
269
270
271
272

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
273
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
274
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
275
276
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
277
278
279
280
281
282
283
284
285
286

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
287
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
288
        else:
thomwolf's avatar
thomwolf committed
289
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
290

291
    def forward(self, x, layer_past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
292
293
294
295
296
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
297
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
298
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
299
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
300
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
301
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
302

thomwolf's avatar
thomwolf committed
303
304
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
305

thomwolf's avatar
thomwolf committed
306
307
        a = self.merge_heads(a)
        a = self.c_proj(a)
308
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
309
310
311

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)
thomwolf's avatar
thomwolf committed
312
313
314
315
316
317
318
319
320


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
321
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
322
323
324
325

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
326
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
327
328
329


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
330
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
331
332
333
        super(Block, self).__init__()
        nx = config.n_embd
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
334
        self.attn = Attention(nx, n_ctx, config, scale)
thomwolf's avatar
thomwolf committed
335
336
337
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)

338
339
    def forward(self, x, layer_past=None, head_mask=None):
        output_attn = self.attn(self.ln_1(x), layer_past=layer_past, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
340
341
        a = output_attn[0]  # output_attn: a, present, (attentions)

thomwolf's avatar
thomwolf committed
342
        x = x + a
thomwolf's avatar
thomwolf committed
343
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
344
        x = x + m
thomwolf's avatar
thomwolf committed
345
346
347

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)
thomwolf's avatar
thomwolf committed
348
349
350
351
352
353
354
355


class GPT2LMHead(nn.Module):
    """ Language Model Head for the transformer """

    def __init__(self, model_embeddings_weights, config):
        super(GPT2LMHead, self).__init__()
        self.n_embd = config.n_embd
356
357
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
358
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
359
360
361
362
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
        self.set_embeddings_weights(model_embeddings_weights)

363
364
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
365
        # Export to TorchScript can't handle parameter sharing so we are cloning them.
366
367
368
369
        if self.torchscript:
            self.decoder.weight = nn.Parameter(model_embeddings_weights.clone())
        else:
            self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
370
371
372

    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
373
374
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
375
376
377
        return lm_logits


378
class GPT2PreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
379
380
381
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
382
    config_class = GPT2Config
383
    pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
384
385
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"
thomwolf's avatar
thomwolf committed
386

387
388
389
    def __init__(self, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
390
391
392
    def init_weights(self, module):
        """ Initialize the weights.
        """
393
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
394
395
396
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
397
398
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
399
400
401
402
403
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    @classmethod
VictorSanh's avatar
VictorSanh committed
404
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
405
406
407
408
409
410
411
        """
        Instantiate a GPT2PreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load selected in the list of:
Joel Grus's avatar
Joel Grus committed
412
                    . `gpt2`
thomwolf's avatar
thomwolf committed
413
414
415
416
                - a path or url to a pretrained model archive containing:
                    . `gpt2_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
                - a path or url to a pretrained model archive containing:
Joel Grus's avatar
Joel Grus committed
417
                    . `gpt2_config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
418
419
420
                    . a TensorFlow checkpoint with trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
Joel Grus's avatar
Joel Grus committed
421
            state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
VictorSanh's avatar
VictorSanh committed
422
            *inputs, **kwargs: additional input for the specific GPT2 class
thomwolf's avatar
thomwolf committed
423
        """
thomwolf's avatar
thomwolf committed
424
425
426
        num_special_tokens = kwargs.pop('num_special_tokens', None)

        model = PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
427

thomwolf's avatar
thomwolf committed
428
429
        # Add additional embeddings for special tokens if needed
        # This step also make sure we are still sharing the output and input embeddings after loading weights
430
        model.set_num_special_tokens(num_special_tokens)
thomwolf's avatar
thomwolf committed
431
432
433
434
435
436
        return model


class GPT2Model(GPT2PreTrainedModel):
    """OpenAI GPT-2 model ("Language Models are Unsupervised Multitask Learners").

thomwolf's avatar
thomwolf committed
437
438
439
    GPT-2 use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
440
441
442
443
    The number of special embeddings can be controlled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrix:
    ::
thomwolf's avatar
thomwolf committed
444
445
446
447
448
449
450
451

        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1]                  ______________________

452
453
454
455
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is equal to

    ::

thomwolf's avatar
thomwolf committed
456
457
        total_tokens_embeddings = config.vocab_size + config.n_special

458
459
460
    You should use the associated indices to index the embeddings.

    Args:
461
462
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
463

464
465
466
467
468
469


    Example::

        config = modeling_gpt2.GPT2Config()
        model = modeling_gpt2.GPT2Model(config)
thomwolf's avatar
thomwolf committed
470
471
    """

thomwolf's avatar
thomwolf committed
472
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
473
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
474
475
476
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
477
        self.wte = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
thomwolf's avatar
thomwolf committed
478
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
479
        self.drop = nn.Dropout(config.embd_pdrop)
480
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
481
        self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
482
483
484

        self.apply(self.init_weights)

485
    def set_num_special_tokens(self, num_special_tokens=None):
486
        """Update input embeddings with new embedding matrix if needed."""
487
        if num_special_tokens is None or self.config.n_special == num_special_tokens:
thomwolf's avatar
thomwolf committed
488
489
490
491
492
493
494
495
496
497
498
            return
        # Update config
        self.config.n_special = num_special_tokens
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
        old_embed = self.wte
        self.wte = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
        self.wte.to(old_embed.weight.device)
        self.init_weights(self.wte)
        # Copy word embeddings from the previous weights
        self.wte.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]

thomwolf's avatar
thomwolf committed
499
    def _prune_heads(self, heads_to_prune):
500
501
502
503
504
505
506
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None):
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
                were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `past`: an optional list of ``torch.LongTensor`` that contains pre-computed hidden-states
                (key and values in the attention blocks) to speed up sequential decoding
                (this is the presents output of the model, cf. below).
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
             A tuple consisting of ``hidden_states`` and ``presents``.

                 ``hidden_states`` are a list of all the encoded-hidden-states in the model (length of the list: number of
                 layers + 1 for the output of the embeddings) as ``torch.FloatTensor`` of size [batch_size, sequence_length,
                 hidden_size] (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of
                 input_ids).

                 ``presents`` are a list of pre-computed hidden-states (key and values in each attention blocks) as
                 torch.FloatTensors. They can be reused to speed up sequential decoding.


        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

            hidden_states, presents = model(input_ids)
            # or
            hidden_states, presents = model.forward(input_ids)

        """
thomwolf's avatar
thomwolf committed
548
        if past is None:
thomwolf's avatar
thomwolf committed
549
            past_length = 0
thomwolf's avatar
thomwolf committed
550
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
551
        else:
thomwolf's avatar
thomwolf committed
552
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
553
554
555
556
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

557
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
558
        # 1.0 in head_mask indicate we keep the head
559
        # attention_probs has shape bsz x n_heads x N x N
560
        # head_mask has shape n_layer x batch x n_heads x N x N
561
562
        if head_mask is not None:
            if head_mask.dim() == 1:
563
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
564
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
565
            elif head_mask.dim() == 2:
566
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
567
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
568
569
        else:
            head_mask = [None] * self.config.n_layer
570

thomwolf's avatar
thomwolf committed
571
572
573
574
575
576
577
578
579
580
581
582
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
583
584
        hidden_states = self.drop(hidden_states)

585
586
        output_shape = input_shape + (hidden_states.size(-1),)

587
        presents = ()
thomwolf's avatar
thomwolf committed
588
        all_attentions = []
589
        all_hidden_states = ()
590
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
thomwolf's avatar
thomwolf committed
591
            if self.output_hidden_states:
592
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
593

594
            outputs = block(hidden_states, layer_past, head_mask[i])
thomwolf's avatar
thomwolf committed
595
            hidden_states, present = outputs[:2]
596
            presents = presents + (present,)
thomwolf's avatar
thomwolf committed
597
598
599
600

            if self.output_attentions:
                all_attentions.append(outputs[2])

thomwolf's avatar
thomwolf committed
601
        hidden_states = self.ln_f(hidden_states)
602

thomwolf's avatar
thomwolf committed
603
604
605
        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
606
            all_hidden_states = all_hidden_states + (hidden_states,)
thomwolf's avatar
thomwolf committed
607

608
        outputs = (hidden_states, presents)
thomwolf's avatar
thomwolf committed
609
        if self.output_hidden_states:
610
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
611
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
612
613
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
614
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
615
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
616
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
617
618
619
620
621


class GPT2LMHeadModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling head ("Language Models are Unsupervised Multitask Learners").

622
    Args:
623
624
625
626
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
627
628
629



630
    Example::
thomwolf's avatar
thomwolf committed
631

632
633
        config = modeling_gpt2.GPT2Config()
        model = modeling_gpt2.GPT2LMHeadModel(config)
thomwolf's avatar
thomwolf committed
634
635
    """

thomwolf's avatar
thomwolf committed
636
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
637
        super(GPT2LMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
638
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
639
640
641
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
        self.apply(self.init_weights)

642
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
643
644
645
        """
        Update input and output embeddings with new embedding matrix. Make sure we are sharing the embeddings.
        TODO Shouldn't we put args + returns ?
thomwolf's avatar
thomwolf committed
646
        """
647
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
648
        self.transformer.set_num_special_tokens(num_special_tokens)
649
        self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
650

651
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None, head_mask=None):
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
                were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `lm_labels`: optional language modeling labels: ``torch.LongTensor`` of shape [batch_size, sequence_length]
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
            `past`: an optional list of ``torch.LongTensor`` that contains pre-computed hidden-states
                (key and values in the attention blocks) to speed up sequential decoding
                (this is the presents output of the model, cf. below).
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            If ``lm_labels`` is not ``None``, returns the language modeling loss. It ``lm_labels`` is ``None``, returns
            a tuple of (``lm_logits``, ``presents``).

                ``lm_logits`` is the language modeling logits as a ``torch.FloatTensor`` of size [batch_size,
                sequence_length, config.vocab_size] (or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ...
                d_n are the dimension of input_ids).

                ``presents`` is a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

            lm_logits, presents = model(input_ids)
            # or
            lm_logits, presents = model.forward(input_ids)

        """
thomwolf's avatar
thomwolf committed
695
696
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, past, head_mask)
        hidden_states = transformer_outputs[0]
697

thomwolf's avatar
thomwolf committed
698
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
699

700
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
701
        if lm_labels is not None:
702
            # Shift so that tokens < n predict n
703
704
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
705
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
706
            loss_fct = CrossEntropyLoss(ignore_index=-1)
707
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
708
                            shift_labels.view(-1))
709
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
710
711

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
712
713
714
715
716


class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling and a Multiple Choice head ("Language Models are Unsupervised Multitask Learners").

717
    Args:
718
719
720
721
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
722

723
    Example::
thomwolf's avatar
thomwolf committed
724

725
726
        config = modeling_gpt2.GPT2Config()
        model = modeling_gpt2.GPT2DoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
727
728
    """

thomwolf's avatar
thomwolf committed
729
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
730
        super(GPT2DoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
731
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
732
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
thomwolf's avatar
thomwolf committed
733
        self.multiple_choice_head = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
734

thomwolf's avatar
thomwolf committed
735
736
        self.apply(self.init_weights)

737
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
738
739
740
        """
        Update input and output embeddings with new embedding matrix.Make sure we are sharing the embeddings
        TODO Shouldn't we put args + returns ?
thomwolf's avatar
thomwolf committed
741
        """
742
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
743
        self.transformer.set_num_special_tokens(num_special_tokens)
744
        self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
745

thomwolf's avatar
thomwolf committed
746
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
747
                position_ids=None, past=None, head_mask=None):
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length] with the BPE token
                indices selected in the range [0, config.vocab_size[
            `mc_token_ids`: a ``torch.LongTensor`` of shape [batch_size, num_choices] with the index of the token from
                which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `lm_labels`: optional language modeling labels: ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length]
                with indices selected in [-1, 0, ..., config.vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., config.vocab_size]
            `multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size]
                with indices selected in [0, ..., num_choices].
            `past`: an optional list of ``torch.LongTensor`` that contains pre-computed hidden-states
                (key and values in the attention blocks) to speed up sequential decoding
                (this is the presents output of the model, cf. below).
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            If ``lm_labels`` and ``multiple_choice_labels`` are not ``None``, outputs a
            ``tuple(language_modeling_loss, multiple_choice_loss)``. If they are not ``None``, outputs a
            ``tuple(lm_logits, multiple_choice_logits, presents)``.

                ``lm_logits``: the language modeling logits as a ``torch.FloatTensor`` of size [batch_size, num_choices, sequence_length, config.vocab_size]

                ``multiple_choice_logits``: the multiple choice logits as a ``torch.FloatTensor`` of size [batch_size, num_choices]

                ``presents``: a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
            mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)

            lm_logits, multiple_choice_logits, presents = model(input_ids, mc_token_ids)
            # or
            lm_logits, multiple_choice_logits, presents = model.forward(input_ids, mc_token_ids)

        """
thomwolf's avatar
thomwolf committed
797
798
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, past, head_mask)
        hidden_states = transformer_outputs[0]
799

thomwolf's avatar
thomwolf committed
800
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
801
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
802

803
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
804
805
806
807
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
808
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
809
        if lm_labels is not None:
810
811
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
812
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
813
814
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
815
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
816
817

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)